1
|
Sepich-Poore GD, Guccione C, Laplane L, Pradeu T, Curtius K, Knight R. Cancer's second genome: Microbial cancer diagnostics and redefining clonal evolution as a multispecies process: Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical care and clonal evolution: Humans and their tumors are not aseptic, and the multispecies nature of cancer modulates clinical care and clonal evolution. Bioessays 2022; 44:e2100252. [PMID: 35253252 PMCID: PMC10506734 DOI: 10.1002/bies.202100252] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
The presence and role of microbes in human cancers has come full circle in the last century. Tumors are no longer considered aseptic, but implications for cancer biology and oncology remain underappreciated. Opportunities to identify and build translational diagnostics, prognostics, and therapeutics that exploit cancer's second genome-the metagenome-are manifold, but require careful consideration of microbial experimental idiosyncrasies that are distinct from host-centric methods. Furthermore, the discoveries of intracellular and intra-metastatic cancer bacteria necessitate fundamental changes in describing clonal evolution and selection, reflecting bidirectional interactions with non-human residents. Reconsidering cancer clonality as a multispecies process similarly holds key implications for understanding metastasis and prognosing therapeutic resistance while providing rational guidance for the next generation of bacterial cancer therapies. Guided by these new findings and challenges, this Review describes opportunities to exploit cancer's metagenome in oncology and proposes an evolutionary framework as a first step towards modeling multispecies cancer clonality. Also see the video abstract here: https://youtu.be/-WDtIRJYZSs.
Collapse
Affiliation(s)
| | - Caitlin Guccione
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lucie Laplane
- Institut d’histoire et de philosophie des sciences et des techniques (UMR8590), CNRS & Panthéon-Sorbonne University, 75006 Paris, France
- Hematopoietic stem cells and the development of myeloid malignancies (UMR1287), Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Thomas Pradeu
- ImmunoConcept (UMR5164), CNRS & University of Bordeaux, 33076 Bordeaux Cedex, France
| | - Kit Curtius
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Lahoz-Beltra R, Rodriguez RJ. Modeling a cancerous tumor development in a virtual patient suffering from a depressed state of mind: Simulation of somatic evolution with a customized genetic algorithm. Biosystems 2020; 198:104261. [DOI: 10.1016/j.biosystems.2020.104261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 12/19/2022]
|
3
|
Irurzun-Arana I, Rackauckas C, McDonald TO, Trocóniz IF. Beyond Deterministic Models in Drug Discovery and Development. Trends Pharmacol Sci 2020; 41:882-895. [PMID: 33032836 PMCID: PMC7534664 DOI: 10.1016/j.tips.2020.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/28/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The model-informed drug discovery and development paradigm is now well established among the pharmaceutical industry and regulatory agencies. This success has been mainly due to the ability of pharmacometrics to bring together different modeling strategies, such as population pharmacokinetics/pharmacodynamics (PK/PD) and systems biology/pharmacology. However, there are promising quantitative approaches that are still seldom used by pharmacometricians and that deserve consideration. One such case is the stochastic modeling approach, which can be important when modeling small populations because random events can have a huge impact on these systems. In this review, we aim to raise awareness of stochastic models and how to combine them with existing modeling techniques, with the ultimate goal of making future drug-disease models more versatile and realistic.
Collapse
Affiliation(s)
- Itziar Irurzun-Arana
- Pharmacometrics and Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdisNA), University of Navarra, 31080, Pamplona, Spain.
| | - Christopher Rackauckas
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Thomas O McDonald
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Iñaki F Trocóniz
- Pharmacometrics and Systems Pharmacology, Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Pamplona, 31008, Spain; Navarra Institute for Health Research (IdisNA), University of Navarra, 31080, Pamplona, Spain; Institute of Data Science and Artificial Intelligence, DATAI, University of Navarra, Pamplona, 31080, Spain.
| |
Collapse
|
4
|
Abstract
Evolution of an individual within another individual is known as within-host dynamics (WHD). The most common modeling technique to study WHD involves ordinary differential equations (ODEs). In the field of biology, models of this kind assume, for example, that both the number of viruses and the number of mouse cells susceptible to being infected change according to their interaction as stated in the ODE model. However, viruses can undergo mutations and, consequently, evolve inside the mouse, whereas the mouse, in turn, displays evolutionary mechanisms through its immune system (e.g., clonal selection), defending against the invading virus. In this work, as the main novelty, we propose an evolutionary WHD model simulating the coexistence of an evolving invader within a host. In addition, instead of using ODEs we developed an alternative methodology consisting of the hybridization of a genetic algorithm with an artificial immune system. Aside from the model, interest in biology, and its potential clinical use, the proposed WHD model may be useful in those cases where the invader exhibits evolutionary changes, for instance, in the design of anti-virus software, intrusion detection algorithms in a corporation’s computer systems, etc. The model successfully simulates two intruder detection paradigms (i.e., humoral detection, danger detection) in which the intruder represents an evolving invader or guest (e.g., virus, computer program,) that infects a host (e.g., mouse, computer memory). The obtained results open up the possibility of simulating environments in which two entities (guest versus host) compete evolutionarily with each other when occupying the same space (e.g., organ cells, computer memory, network).
Collapse
|