1
|
Neururer FR, Heim F, Baltrun M, Boos P, Beerhues J, Seidl M, Hohloch S. Probing the influence of imidazolylidene- and triazolylidene-based carbenes on the catalytic potential of dioxomolybdenum and dioxotungsten complexes in deoxygenation catalysis. Inorg Chem Front 2024:d4qi02392g. [PMID: 39882194 PMCID: PMC11771132 DOI: 10.1039/d4qi02392g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/22/2024] [Indexed: 01/31/2025]
Abstract
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO2 (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h-1 are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest that the superiority of the triazolylidene-based complex 2-Mo is a result of a highly stable metal carbene bond, strongly exceeding the stability of the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex (5-Mo) that can be thermally converted to a μ-oxodimolybdenum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation of the nitroarenes to the corresponding anilines with nitrosoarenes as intermediates. In summary, this work showcases the superior influence of MIC donors on the catalytic properties of early transition metal complexes.
Collapse
Affiliation(s)
- Florian R Neururer
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Florian Heim
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Marc Baltrun
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Philipp Boos
- University of Paderborn, Department of Chemistry Warburger Straße 100 33098 Paderborn Germany
| | - Julia Beerhues
- Freie Universität Berlin, Department of Inorganic Chemistry Fabeckstraße 34-36 14195 Berlin Germany
| | - Michael Seidl
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| | - Stephan Hohloch
- University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
2
|
Cao D, Xia S, Li L, Zeng H, Li CJ. PPh 3-Promoted Direct Deoxygenation of Epoxides to Alkenes. Org Lett 2024; 26:6418-6423. [PMID: 39046430 DOI: 10.1021/acs.orglett.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Deoxygenation of epoxides into alkenes is one of the most important strategies in organic synthesis, biomass conversions, and medicinal chemistry. Although metal-catalyzed direct deoxygenation provides one of the most commonly encountered protocols for the conversion of epoxides to alkenes, the requirement of expensive catalysts and extra reductants has largely limited their universal applicability. Herein, we report an efficient PPh3-promoted metal-free strategy for deoxygenation of epoxides to generate alkene derivatives. The success of deoxyalkenylation of epoxides bearing a wide range of functional groups to give terminal, 1,1-disubstituted, and 1,2-disubstituted alkenes manifests the powerfulness and versatility of this strategy. Moreover, gram-scale synthesis with excellent yield and modification of biologically active molecules exemplifies its generality and practicability.
Collapse
Affiliation(s)
- Dawei Cao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Shumei Xia
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Lijuan Li
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Centre for Green Chemistry and Catalysis, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
3
|
Canote CA, Kilyanek SM. Reactivity of metal dioxo complexes. Dalton Trans 2024; 53:4874-4889. [PMID: 38379444 DOI: 10.1039/d3dt04390h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Metal dioxo chemistry and its diverse reactivity are presented with an emphasis on the mechanisms of reactivity. Work from approximately the last decade is surveyed and organized by metal. In particular, the chemistry of cis-dioxo metal complexes is discussed at length. Reactions are grouped by generic type, including addition across a metal oxo bond, oxygen atom transfer, and radical atom transfer reactions. Attention is given to advances in deoxygenation chemistry, oxidation chemistry, and reductive transformations.
Collapse
Affiliation(s)
- Cody A Canote
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| | - Stefan M Kilyanek
- Department of Chemistry and Biochemistry, 1 University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
4
|
Zhang Y, Shi S, Yang Z. Thiourea-Mediated Stereospecific Deoxygenation of Cyanoepoxides to Access Highly Diastereopure Alkenyl Nitriles. J Org Chem 2024; 89:2748-2758. [PMID: 38277233 DOI: 10.1021/acs.joc.3c02869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
A practical and efficient protocol for synthesis of >99% diastereopure Z- and E-alkenyl nitriles is developed, through tetramethylthiourea-mediated stereospecific deoxygenation of respective cis- and trans-cyanoepoxides in ethanol. The desired products are obtained in excellent yields.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Shukui Shi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, P.R. China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
5
|
Suárez-Pantiga S, Sanz R. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes. Org Biomol Chem 2021; 19:10472-10492. [PMID: 34816863 DOI: 10.1039/d1ob01939b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
6
|
Louka A, Stratakis M. Deoxygenation of Epoxides with Hexamethyldigermane Catalyzed by Au Nanoparticles on TiO
2. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastasia Louka
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| | - Manolis Stratakis
- Department of Chemistry University of Crete Voutes 71003 Heraklion Greece
| |
Collapse
|
7
|
Liu S, Amaro-Estrada JI, Baltrun M, Douair I, Schoch R, Maron L, Hohloch S. Catalytic Deoxygenation of Nitroarenes Mediated by High-Valent Molybdenum(VI)–NHC Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenyu Liu
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | | | - Marc Baltrun
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Fiorio JL, Rossi LM. Clean protocol for deoxygenation of epoxides to alkenes via catalytic hydrogenation using gold. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01695k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Au NP catalyst combined with triethylphosphite, P(OEt)3, is remarkably more reactive than solely Au NPs for the selective deoxygenation of epoxides to alkenes.
Collapse
Affiliation(s)
- Jhonatan L. Fiorio
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Liane M. Rossi
- Departamento de Química Fundamental
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
9
|
Lamb JR, Hubbell AK, MacMillan SN, Coates GW. Carbonylative, Catalytic Deoxygenation of 2,3-Disubstituted Epoxides with Inversion of Stereochemistry: An Alternative Alkene Isomerization Method. J Am Chem Soc 2020; 142:8029-8035. [PMID: 32309937 DOI: 10.1021/jacs.0c02653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Reactions facilitating inversion of alkene stereochemistry are rare, sought-after transformations in the field of modern organic synthesis. Although a number of isomerization reactions exist, most methods require specific, highly activated substrates to achieve appreciable conversion without side product formation. Motivated by stereoinvertive epoxide carbonylation reactions, we developed a two-step epoxidation/deoxygenation process that results in overall inversion of alkene stereochemistry. Unlike most deoxygenation systems, carbon monoxide was used as the terminal reductant, preventing difficult postreaction separations, given the gaseous nature of the resulting carbon dioxide byproduct. Various alkyl-substituted cis- and trans-epoxides can be reduced to trans- and cis-alkenes, respectively, in >99:1 stereospecificity and up to 95% yield, providing an alternative to traditional, direct isomerization approaches.
Collapse
Affiliation(s)
- Jessica R Lamb
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Aran K Hubbell
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - Geoffrey W Coates
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
10
|
Mori T, Takeuchi Y, Hojo M. Nickel-catalyzed deoxygenation of oxiranes: Conversion of epoxides to alkenes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
|
12
|
Andrea KA, Brown TR, Murphy JN, Jagota D, McKearney D, Kozak CM, Kerton FM. Characterization of Oxo-Bridged Iron Amino-bis(phenolate) Complexes Formed Intentionally or in Situ: Mechanistic Insight into Epoxide Deoxygenation during the Coupling of CO2 and Epoxides. Inorg Chem 2018; 57:13494-13504. [DOI: 10.1021/acs.inorgchem.8b02109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kori A. Andrea
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Tyler R. Brown
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Jennifer N. Murphy
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Dakshita Jagota
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Declan McKearney
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Christopher M. Kozak
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| | - Francesca M. Kerton
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
| |
Collapse
|
13
|
Fassbender J, Schnakenburg G, Gates DP, Espinosa Ferao A, Streubel R. Unconventional ionic ring-deconstruction pathways of a three-membered heterocycle. Chem Commun (Camb) 2018; 54:14013-14016. [DOI: 10.1039/c8cc08713j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two different ionic deconstruction reactions of the oxaphosphirane ring in I are reported. One is induced by base and involves displacement of the aldehyde unit forming II whilst acid-initiated extrusion of the ring-carbon with its substituents yielded III. Further insights into the latter ring-deconstruction were obtained by quantum chemical calculations.
Collapse
Affiliation(s)
- Jan Fassbender
- Institut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| | - Derek P. Gates
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica
- Universidad de Murcia
- Campus de Espinardo
- 30100 Murcia
- Spain
| | - Rainer Streubel
- Institut für Anorganische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn
- 53121 Bonn
- Germany
| |
Collapse
|