1
|
Rostami N, Dekamin MG, Valiey E, FaniMoghadam H. l-Asparagine-EDTA-amide silica-coated MNPs: a highly efficient and nano-ordered multifunctional core-shell organocatalyst for green synthesis of 3,4-dihydropyrimidin-2(1 H)-one compounds. RSC Adv 2022; 12:21742-21759. [PMID: 36091190 PMCID: PMC9386691 DOI: 10.1039/d2ra02935a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/03/2022] [Indexed: 02/02/2023] Open
Abstract
In this study, new l-asparagine grafted on 3-aminopropyl-modified Fe3O4@SiO2 core-shell magnetic nanoparticles using the EDTA linker (Fe3O4@SiO2-APTS-EDTA-asparagine) was prepared and its structures properly confirmed using different spectroscopic, microscopic and magnetic methods or techniques including FT-IR, EDX, XRD, FESEM, TEM, TGA and VSM. The Fe3O4@SiO2-APTS-EDTA-asparagine core-shell nanomaterial was found, as a highly efficient multifunctional and recoverable organocatalyst, to promote the efficient synthesis of a wide range of biologically-active 3,4-dihydropyrimidin-2(1H)-one derivatives under solvent-free conditions. It was proved that Fe3O4@SiO2-APTS-EDTA-asparagine MNPs, as a catalyst having excellent thermal and magnetic stability, specific morphology and acidic sites with appropriate geometry, can activate the Biginelli reaction components. Moreover, the environmental-friendliness and nontoxic nature of the catalyst, cost effectiveness, low catalyst loading, easy separation of the catalyst from the reaction mixture and short reaction time are some of the remarkable advantages of this green protocol.
Collapse
Affiliation(s)
- Negin Rostami
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Mohammad G Dekamin
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Ehsan Valiey
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| | - Hamidreza FaniMoghadam
- Pharmaceutical and Biologically-Active Compounds Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-7730 21584 +98-21-77 240 284
| |
Collapse
|
2
|
Spick-and-span protocol for designing of silica-supported enantioselective organocatalyst for the asymmetric aldol reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Bilgiç A, Karapınar HS. APTMS-BCAD modified magnetic iron oxide for magnetic solid-phase extraction of Cu(II) from aqueous solutions. Heliyon 2022; 8:e09645. [PMID: 35706942 PMCID: PMC9189893 DOI: 10.1016/j.heliyon.2022.e09645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 01/17/2023] Open
Abstract
Fe3O4@SiO2-3-aminopropyltrimethoxysilane-1,8-bis (3-chloropropoxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The structure of the adsorbent was characterized by FTIR, XRD, SEM, EDX, and TEM analysis. Optimum conditions for Cu(II) adsorption were determined as adsorbent dose 0.04 g, pH 5.0, contact time 120 min, and beginning concentration of 30 mg/L in the adsorption process. The adsorption capacity for Cu(II) ions was 43.67 mg/g and the removal efficiency was 84.72 percent. The Langmuir isotherm and the pseudo-second-order model fit the experimental data better. Adsorption was a spontaneous and endothermic process based on the obtained thermodynamic properties such as ΔG°, ΔH°, and ΔS°. The results showed that the sorbent has good selectivity in the presence of competing ions. The method was determined to be accurate and effective using real water samples and CRM. Magnetic Fe3O4@SiO2-3-aminopropyl-trimethoxysilane-1,8-bis(3-chloropro-poxy) anthracene-9,10-dione was synthesized as a new, sustainable, and environmentally friendly adsorbent for magnetic solid-phase extraction of Cu(II) from aqueous solutions. The results showed that the presence of competitor ions did not have a significant effect on the sorption of Cu(II) ion and the sorbent had good selectivity. Using real water samples and CRM, the method was found to be accurate and effective.
Collapse
Affiliation(s)
- Ali Bilgiç
- Vocational School of Technical Sciences, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| | - Hacer Sibel Karapınar
- Scientific and Technological Research & Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
4
|
Madivalappa Davanagere P, Maiti B. 1,3-Bis(carboxymethyl)imidazolium Chloride as a Sustainable, Recyclable, and Metal-Free Ionic Catalyst for the Biginelli Multicomponent Reaction in Neat Condition. ACS OMEGA 2021; 6:26035-26047. [PMID: 34660965 PMCID: PMC8515400 DOI: 10.1021/acsomega.1c02976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/21/2021] [Indexed: 05/06/2023]
Abstract
A simple and novel methodology has been developed for the synthesis of 1,3-bis(carboxymethyl)imidazolium chloride [BCMIM][Cl] salt. The ionic salt [BCMIM][Cl] catalyzed the reaction among arylaldehydes; the substituted 1,3-dicarbonyl compounds and urea/thiourea at 80 °C with 5 mol % under neat condition provided the substituted dihydropyrimidin-2(1H)-one/thiones in the synthesis step with yields of up to 96%. In addition, we synthesized the commercially available drug Monastrol by employing this methodology. The new synthesis method employs the benefits of a broad substrate scope, short reaction time, and high atom economy along with low catalyst loading in neat conditions, and is devoid of chromatographic purification. The ionic salt [BCMIM][Cl] was recycled and reused up to six cycles without substantial damage of its catalytic efficiency.
Collapse
Affiliation(s)
| | - Barnali Maiti
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, India
| |
Collapse
|
5
|
Tandon R, Tandon N, Patil SM. Overview on magnetically recyclable ferrite nanoparticles: synthesis and their applications in coupling and multicomponent reactions. RSC Adv 2021; 11:29333-29353. [PMID: 35479579 PMCID: PMC9040805 DOI: 10.1039/d1ra03874e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
Nanocatalysis is an emerging area of research that has attracted much attention over the past few years. It provides the advantages of both homogeneous as well as heterogeneous catalysis in terms of activity, selectivity, efficiency and reusability. Magnetically recoverable nanocatalysts provide a larger surface area for the chemical transformations where the organic groups can be anchored and lead to decrease in the reaction time, increase in the reaction output and improve the atom economy of the chemical reactions. Moreover, magnetic nanocatalysts provide a greener approach towards the chemical transformations and are easily recoverable by the aid of an external magnet for their reusability. This review aims to give an insight into the important work done in the field of magnetically recoverable nanocatalysts and their applications in carbon-carbon and carbon-heteroatom bond formation.
Collapse
Affiliation(s)
- Runjhun Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Nitin Tandon
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Shripad M Patil
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| |
Collapse
|
6
|
Design and synthesis of a novel nanocomposite based on magnetic dopamine nanoparticles for purification of α-amylase from the bovine milk. Sci Rep 2021; 11:13428. [PMID: 34183749 PMCID: PMC8239001 DOI: 10.1038/s41598-021-92919-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
In this paper, a novel nanocomposite based on magnetic nanoparticles decorated by dopamine were reported. Three modified magnetic nanocomposites by dopamine were offered with different type of linkers. The mentioned magnetic nanocomposites were applied to separate α-amylase protein from fresh bovine milk. All of the magnetic nanocomposites were characterized and investigated by using Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, field-emission scanning microscope, X-ray diffraction pattern, and vibrating-sample magnetometer analyses. To investigate the purifying application, sodium dodecyl sulfate polyacrylamide gel electrophoresis, one-dimensional isoelectric focusing gel electrophoresis, and alpha-amylase activity assay were employed. With paying attention to factors such as yield of purification and concentration of separated protein by each of magnetic nanocomposite, it could be concluded that the length of linkers played an important role in α-amylase protein separation. According to the results, the best separation and purification of α-amylase protein with 49.83% recovery and 40.11-fold purification efficiency was related to longest length linker, 1,4-butanediol diglycidyl ether, because of considerable conjugation with nanocomposite. Also, docking calculation has shown that the binding energy is - 1.697 kcal/mol and ΔG = - 6.844 kcal/mol which result that the interaction process between dopamine and α-amylase protein is spontaneous.
Collapse
|
7
|
Sadjadi S, Koohestani F, Heravi M. Biochar-Based Graphitic Carbon Nitride Adorned with Ionic Liquid Containing Acidic Polymer: A Versatile, Non-Metallic Catalyst for Acid Catalyzed Reaction. Molecules 2020; 25:E5958. [PMID: 33339246 PMCID: PMC7766038 DOI: 10.3390/molecules25245958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022] Open
Abstract
A novel biochar-based graphitic carbon nitride was prepared through calcination of Zinnia grandiflora petals and urea. To provide acidic and ionic-liquid functionalities on the prepared carbon, the resultant biochar-based graphitic carbon nitride was vinyl functionalized and polymerized with 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylic acid and the as-prepared 1-vinyl-3-butylimidazolium chloride. The final catalytic system that benefits from both acidic (-COOH and -SO3H) and ionic-liquid functionalities was applied as a versatile, metal-free catalyst for promoting some model acid catalyzed reactions such as Knoevenagel condensation and Biginelli reaction in aqueous media under a very mild reaction condition. The results confirmed high activity of the catalyst. Broad substrate scope and recyclability and stability of the catalyst were other merits of the developed protocols. Comparative experiments also indicated that both acidic and ionic-liquid functionalities on the catalyst participated in the catalysis.
Collapse
Affiliation(s)
- Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemicals Institute, P.O. Box 14975112, Tehran 1497713115, Iran;
| | - Fatemeh Koohestani
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemicals Institute, P.O. Box 14975112, Tehran 1497713115, Iran;
| | - Majid Heravi
- Department of Chemistry, School of Science, Alzahra University, P.O. Box 1993891176, Vanak, Tehran 1993891176, Iran
| |
Collapse
|
8
|
Nasseri MA, Rezazadeh Z, Kazemnejadi M, Allahresani A. Cu-Mn Bimetallic Complex Immobilized on Magnetic NPs as an Efficient Catalyst for Domino One-Pot Preparation of Benzimidazole and Biginelli Reactions from Alcohols. Catal Letters 2020. [DOI: 10.1007/s10562-020-03371-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
A highly efficient one-pot multicomponent synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones catalyzed by strontium pyroarsenate nano-plates. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr(VI) metal ions in the aqueous medium. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113398] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Zanin LL, Porto ALM. HClO
4
‐Al
2
O
3
as a Prominent Catalyst in the Synthesis of 3,4‐Dihydropyrimidin‐2(1
H
)‐ones/thiones under Environmentally Friendly Solvent Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202001830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lucas L. Zanin
- Laboratório de Química Orgânica e BiocatáliseInstituto de Química de São CarlosUniversidade de São Paulo Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina 13563-120 São Carlos São Paulo Brazil
| | - André L. M. Porto
- Laboratório de Química Orgânica e BiocatáliseInstituto de Química de São CarlosUniversidade de São Paulo Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina 13563-120 São Carlos São Paulo Brazil
| |
Collapse
|
12
|
Bilgic A, Cimen A. Two Novel BODIPY-Functional Magnetite Fluorescent Nano-Sensors for Detecting of Cr(VI) Ions in Aqueous Solutions. J Fluoresc 2020; 30:867-881. [PMID: 32494934 DOI: 10.1007/s10895-020-02559-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022]
Abstract
In this study, we developed two different very sensitive magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors for the selective detection of Cr(VI) ions. The Cr(VI) metal ions sensing is based on the fluorescent quenching of BODIPY functionalized with Fe3O4@SiO2-TPED and Fe3O4@SiO2-TMPTA nanoparticles in the ethanol-water environment. Characterization of the newly synthesized fluorescent BODIPY compound was performed on a 1H and 13C-NMR spectrometer. The morphology, chemical and physical properties of the sensing nano-sensors were studied by transmission thermogravimetric analysis (TGA), X-ray diffraction (XRD), energy dispersive X-ray (EDX), scanning electron microscopy (SEM), FT-IR spectroscopy, and transmission electron microscopy (TEM). UV-visible and fluorescent spectroscopy were used to characterize BODIPY functionalized magnetite fluorescent nano-sensors. Characterization measurements revealed that the mean particle diameter of magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors was 18.5 and 19 nm, respectively. The magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors (0.1 gL-1 in EtOH/H2O, v/v (3/7)) showed fluorescence quenching responses towards Cr(VI) ions in the medium at pH:1. The fluorescence quenches of the magnetite fluorescent Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY nano-sensors by Cr(VI) were completed in first 5 and 3 min. Respectively. These features provide potential uses of BODIPY functionalized magnetite fluorescent nano-sensors (Fe3O4@SiO2-TPED-BODIPY and Fe3O4@SiO2-TMPTA-BODIPY) as a new class of non-toxic sensors for environmental applications. Graphical Abstract.
Collapse
Affiliation(s)
- Ali Bilgic
- Faculty of Kamil Ozdag Science, Department of Chemistry, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey.
| | - Aysel Cimen
- Faculty of Kamil Ozdag Science, Department of Chemistry, Karamanoglu Mehmetbey University, 70200, Karaman, Turkey
| |
Collapse
|
13
|
Gopalan Sibi M, Verma D, Kim J. Magnetic core–shell nanocatalysts: promising versatile catalysts for organic and photocatalytic reactions. CATALYSIS REVIEWS 2020. [DOI: 10.1080/01614940.2019.1659555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Malayil Gopalan Sibi
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Deepak Verma
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| | - Jaehoon Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
- School of Chemical Engineering, Sungkyunkwan University, Gyeong Gi-Do, Republic of Korea
| |
Collapse
|
14
|
Kazemi M. Magnetically reusable nanocatalysts in biginelli synthesis of dihydropyrimidinones (DHPMs). SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1720740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mosstafa Kazemi
- Young Researchers and Elite Club, Islamic Azad University, Ilam, Iran
| |
Collapse
|
15
|
Mangala K, Sreekumar K. Study of polycarbosilane-supported copper(II) as a heterogeneous catalyst. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-02741-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Zacchi CHC, Vieira SS, Ardisson JD, Araujo MH, de Fátima Â. Synthesis of environmentally friendly, magnetic acid-type calix[4]arene catalyst for obtaining Biginelli adducts. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Ghassempour Nikfarjam F, Hashemi MM, Ezabadi A. Design, Preparation, and Characterization of a Novel IL-Based Catalyst, [(Et3N)2SO][HSO4]2, as an Efficient and Recyclable Catalyst in Biginelli Reaction under Solvent-Free Conditions. Polycycl Aromat Compd 2019. [DOI: 10.1080/10406638.2019.1653943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Ali Ezabadi
- Department of Chemistry, Faculty of Science, Islamic Azad University, Central Tehran Branch, Tehran, Iran
| |
Collapse
|
18
|
Copper‐Phosphine Supported Fe
3
O
4
@SiO
2
as a Novel Reusable Nanocatalyst‐Catalyzed Tandem Reaction of Indole and Alcohols to Bis(indolyl)methanes under Blue LED Light. ChemistrySelect 2019. [DOI: 10.1002/slct.201901586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Mohammadi H, Shaterian HR. Ferric (III) complex supported on superparamagnetic Fe3O4@SiO2 as a reusable Lewis acid catalyst: a new highly efficient protocol for the synthesis of acridinedione and spiroquinazolin-4(3H)-one derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03942-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Introduction of Ag/CuO/MCM‐48 as an efficient catalyst for the one‐pot synthesis of novel pyran‐pyrrole hybrids. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Patil RV, Chavan JU, Dalal DS, Shinde VS, Beldar AG. Biginelli Reaction: Polymer Supported Catalytic Approaches. ACS COMBINATORIAL SCIENCE 2019; 21:105-148. [PMID: 30645098 DOI: 10.1021/acscombsci.8b00120] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Biginelli product, dihydropyrimidinone (DHPM) core, and its derivatives are of immense biological importance. There are several methods reported as modifications to the original Biginelli reaction. Among them, many involve the use of different catalysts. Also, among the advancements that have been made to the Biginelli reaction, improvements in product yields, less hazardous reaction conditions, and simplified isolation of products from the reaction predominate. Recently, solid-phase synthetic protocols have attracted the research community for improved yields, simplified product purification, recyclability of the solid support, which forms a special economic approach for Biginelli reaction. The present Review highlights the role of polymer-supported catalysts in Biginelli reaction, which may involve organic, inorganic, or hybrid polymers as support for catalysts. A few of the schemes involve magnetically recoverable catalysts where work up provides green approach relative to traditional methods. Some research groups used polymer-catalyst nanocomposites and polymer-supported ionic liquids as catalyst. Solvent-free, an ultrasound or microwave-assisted Biginelli reactions with polymer-supported catalysts are also reported.
Collapse
Affiliation(s)
- Rajendra V. Patil
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| | - Jagdish U. Chavan
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| | - Dipak S. Dalal
- School of Chemical Sciences, North Maharashtra University, Jalgaon-425001, India
| | - Vaishali S. Shinde
- Garware Research Centre, Department of Chemistry, University of Pune, Pune-411 007, India
| | - Anil G. Beldar
- Department of Chemistry, P.S.G.V.P.M’s SIP Arts, GBP Science and STKVS Commerce College, Shahada, Nandurbar-425409, India
| |
Collapse
|
22
|
Ramezani L, Yahyazadeh A, Sheykhan M. The First C−Cl Activation in Ullmann C−O Coupling by MOFs. ChemCatChem 2018. [DOI: 10.1002/cctc.201801111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Leila Ramezani
- Chemistry Department; University of Guilan; Rasht 4199613776 Iran
| | - Asieh Yahyazadeh
- Chemistry Department; University of Guilan; Rasht 4199613776 Iran
| | - Mehdi Sheykhan
- Chemistry Department; University of Guilan; Rasht 4199613776 Iran
| |
Collapse
|
23
|
Yahyazadeh A, Abbaspour-Gilandeh E, Aghaei-Hashjin M. Four-Component Synthesis of 2-Amino-3-Cyanopyridine Derivatives Catalyzed by Cu@imineZCMNPs as a Novel, Efficient and Simple Nanocatalyst Under Solvent-Free Conditions. Catal Letters 2018. [DOI: 10.1007/s10562-018-2318-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Fu R, Yang Y, Ma X, Sun Y, Li J, Gao H, Hu H, Zeng X, Yi J. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids. Molecules 2017; 22:E1531. [PMID: 28891992 PMCID: PMC6151647 DOI: 10.3390/molecules22091531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 09/07/2017] [Indexed: 11/16/2022] Open
Abstract
Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1H)-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.
Collapse
Affiliation(s)
- Renzhong Fu
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Yang Yang
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Xudong Ma
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Yu Sun
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Jin Li
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Hang Gao
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Huaxing Hu
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Xiaojun Zeng
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| | - Jun Yi
- Jiangsu Laboratory of Advanced Functional Material, School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu 215500, China.
| |
Collapse
|