1
|
Xiong Z, Zhang J, Guo F, Zhou F, Yang Q, Lu W, Shi H. Optimizing study on the NH 3-SCR activity of Ce-W-Ti@g-C 3N 4 catalyst: influence of graphite carbon nitride types. ENVIRONMENTAL TECHNOLOGY 2024; 45:4512-4525. [PMID: 37675519 DOI: 10.1080/09593330.2023.2256990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/19/2023] [Indexed: 09/08/2023]
Abstract
Herein, three g-C3N4(MCN/TCN/UCN), obtained by the direct pyrolysis of melamine/urea/thiourea respectively, were introduced as supports to optimize the NH3-SCR activity of Ce-W-Ti catalyst. Compared to CWT-400-Air, CWT@g-C3N4(2)-300-N2 exhibits lower crystalline anatase TiO2 and larger specific surface area, which improves the dispersion of Ce/W/Ti species on catalysts surface. Furthermore, the introduction of g-C3N4 as supports also contributes to doping C/N elements into Ce-W-Ti catalyst and increases the Ce3+/(Ce3++Ce4+) and Oα/(Oα+Oβ) molar ratios on catalyst surface. These all are advantageous to the NH3-SCR activity. However, UCN shows better promotional effect than MCN and TCN. This might be mainly attributed to the loose and porous stacked layered fold structure of UCN, the larger BET surface area, higher dispersion of Ce/W/Ti species and moderate weak/medium-strong acid sites of CWT@UCN(2)-300-N2. At the same time, the influence of carbon nitride amount, calcination atmosphere and calcination temperature on the NH3-SCR activity of CWT@g-C3N4 catalyst were also investigated.
Collapse
Affiliation(s)
- Zhibo Xiong
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
| | - Jing Zhang
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
| | - Fucheng Guo
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
| | - Fei Zhou
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
- Jiangsu Guoxin Jingjiang Power Generation Co., Ltd., Jingjiang, People's Republic of China
| | - Qiguo Yang
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
| | - Wei Lu
- School of Energy and Power Engineering, University of Shanghai for Science & Technology, Shanghai, People's Republic of China
| | - Huancong Shi
- Huzhou Institute of Zhejiang University, Huzhou, People's Republic of China
| |
Collapse
|
2
|
Promotional Effect of Zirconium Doping on the NH
3
‐SCR Activity of CeO
2
and CeO
2
‐TA Modified by Thiourea: A Comparative Study. ChemCatChem 2023. [DOI: 10.1002/cctc.202201578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
3
|
Xiong Z, Liu J, Guo F, Du Y, Zhou F, Yang Q, Lu W, Shi H. Influence of nonmetallic elements doping on the NH3-SCR activity and properties of Ce20W10Ti100O catalyst via melamine modification. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
4
|
Du Y, Liu X, Liu J, Du R, Wu X. DeNO x performance enhancement of Cu-based oxides via employing a TiO 2 phase to modify LDH precursors. RSC Adv 2022; 12:10142-10153. [PMID: 35424927 PMCID: PMC8968189 DOI: 10.1039/d2ra00316c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
CuAl-LDO, CuAl-LDO/TiO2 and CuAl-LDO/TiO2NTs catalysts were obtained from TiO2 modified LDHs precursor which were prepared by in situ assembly method. Then catalysts were evaluated in the selective catalytic reduction of NO x with NH3(NH3-SCR), and the results showed that the CuAl-LDO/TiO2NTs catalyst exhibited preferable deNO x performance (more than 80% NO x conversion and higher than 90% N2 selectivity at a temperature range of 210-330 °C) as well as good SO2 resistance. With the aid of series of characterizations such as XRD, N2 adsorption/desorption, XPS, NH3-TPD, H2-TPR, and in situ DRIFTS, it could be concluded that, doping TiO2NTs afforded the catalyst larger specific surface area, more abundant surface chemisorption oxygen species and more excellent redox performance. Meanwhile, In situ DRIFTS evidenced that CuAl-LDO/TiO2NTs catalyst has a strong adsorption capacity for the reaction gas, which is more conducive to the progress of the SCR reaction.
Collapse
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 P. R. China
| | - Xuezhen Liu
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 P. R. China
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China +86-351-6018528 +86-351-6018528
| | - Jiangning Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China +86-351-6018528 +86-351-6018528
| | - Rongting Du
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China +86-351-6018528 +86-351-6018528
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China +86-351-6018528 +86-351-6018528
- Shanxi Huadun Industrial Co., Ltd Taiyuan 030062 China
| |
Collapse
|
5
|
Wu S, Zhao H, Tang Z, Zhang J. Fabrication of a multi-dimensional CoFeO x catalyst for the efficient catalytic oxidation elimination of o-dichlorobenzene. NEW J CHEM 2022. [DOI: 10.1039/d2nj01976k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-dimensional CoFeOx/CoOx with a 2D/1D structure exhibited outstanding catalytic activity and thermal stability in the catalytic elimination of o-DCB.
Collapse
Affiliation(s)
- Shixing Wu
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Haijun Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Jiyi Zhang
- School of Petroleum and Chemical, Lanzhou University of Technology, Lanzhou 730050, China
| |
Collapse
|
6
|
Wang C, Li Y, Yang W, Zhou L, Wei S. Nanozyme with Robust Catalase Activity by Multiple Mechanisms and Its Application for Hypoxic Tumor Treatment. Adv Healthc Mater 2021; 10:e2100601. [PMID: 34390206 DOI: 10.1002/adhm.202100601] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Utilizing catalase-mimicking nanozymes to produce O2 is an effective method to overcome tumor hypoxia. However, it is challenging to fabricate nanozymes with ultrahigh catalytic activity. Palladium nanosheet (Pd NS), a photothermal agent for photothermal therapy (PTT), has superior catalase-mimicking activity. Here, titanium dioxide (TiO2 ) is used to modify Pd NS (denoted Pd@TiO2 ) by a simple one-step method to improve its catalytic activity about 8 times. The enhancement mechanism's fundamental insights are discussed through experiments and density functional theory calculations. Next, zinc phthalocyanine is loaded on Pd@TiO2 to form a nanomotor (denoted PTZCs) with the synergistic activities of photodynamic therapy and PTT. PTZCs inherit the catalase activity of Pd@TiO2 to facilitate the decomposition of endogenous H2 O2 to O2 , which can relieve tumor hypoxia and propel PTZC migration to expand the reach of PTZCs, further enhancing its synergistic treatment outcome both in vitro and in vivo. It is proposed that this work can provide a simple and effective strategy for catalytic activity enhancement and bring a critical new perspective to studying and guiding the nanozyme design.
Collapse
Affiliation(s)
- Chongchong Wang
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| | - Yanqing Li
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University Baoding 071003 China
| | - Lin Zhou
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| | - Shaohua Wei
- College of Chemistry and Materials Science Jiangsu Key Laboratory of Biofunctional Materials Jiangsu Collaborative Innovation Center of Biomedical Functional Materials Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng 224051 China
| |
Collapse
|
7
|
Park SJ, Kang SH, Min HK, Choi YH, Lee JW. Depolymerization of polystyrene over Mgx-Aly-O catalysts derived from hydrotalcites: Effect of Mg/Al ratio on the basicity and catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Yan Q, Hou X, Liu G, Li Y, Zhu T, Xin Y, Wang Q. Recent advances in layered double hydroxides (LDHs) derived catalysts for selective catalytic reduction of NO x with NH 3. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123260. [PMID: 32947694 DOI: 10.1016/j.jhazmat.2020.123260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
In recent years, layered double hydroxides (LDHs) derived metal oxides as highly efficient catalysts for selective catalytic reduction of NOx with NH3 (NH3-SCR) have attracted great attention. The high dispersibility and interchangeability of cations within the brucite-like layers make LDHs an indispensable branch of catalytic materials. With the increasingly stringent and ultra-low emission regulations, there is an urgent need for highly efficient and stable low-medium temperature denitration catalysts in markets. In this contribution, we have critically summarized the recent research progress in the LDHs derived NH3-SCR catalysts, including their ability for NOx removal, N2 selectivity, active temperature window, stability and resistance to poisoning. The advantages and defects of various types of LDHs-derived catalysts are comparatively summarized, and the corresponding modification strategies are discussed. In addition, considering the importance of the catalyst's resistance to poisoning in practical applications, we discuss the poisoning mechanism of each component in flue gases, and provide the corresponding strategies to improve the poisoning resistance of catalysts. Finally, from the perspective of practical applications and operation cost, the regeneration measures of catalysts after poisoning is also discussed. We hope that this work can give timely technical guidance and valuable insights for the applications of LDHs materials in the field of NOx control.
Collapse
Affiliation(s)
- Qinghua Yan
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Xiangting Hou
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Guocheng Liu
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yuran Li
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Tingyu Zhu
- Research Center for Process Pollution Control, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Qiang Wang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
9
|
Zeng Y, Wu Z, Guo L, Wang Y, Zhang S, Zhong Q. Insight into the effect of carrier on N2O formation over MnO2/MOx (M = Al, Si and Ti) catalysts for selective catalytic reduction (SCR) of NOx with NH3. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Zhang C, Gao Y, Altaf N, Wang Q. A comparative study on the NO x storage and reduction performance of Pt/Ni 1Mg 2Al 1O x and Pt/Mn 1Mg 2Al 1O x catalysts. Dalton Trans 2020; 49:3970-3980. [PMID: 31713566 DOI: 10.1039/c9dt03787j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A series of Ni1Mg2Al1Ox, Mn1Mg2Al1Ox, 0.5Pt/Ni1Mg2Al1Ox and 0.5Pt/Mn1Mg2Al1Ox catalysts were carefully prepared and their NOx storage and reduction (NSR) performance including NOx oxidation efficiency (NOE), NOx storage capacity (NSC), NOx conversion rate (XNO), N2 selectivity (SN2), N2O selectivity (SN2O) and NH3 selectivity (SNH3), was systematically investigated. A SO2 resistance test was also performed in the presence of 100 ppm SO2. The NOE and NSC experimental results revealed that the Ni1Mg2Al1Ox catalyst possesses a higher NSC, while the Mn1Mg2Al1Ox catalyst possesses a better NOE. With regard to XNO, 0.5Pt/Ni1Mg2Al1Ox presented higher results at 200 °C and 400 °C, while 0.5Pt/Mn1Mg2Al1Ox obtained the highest result at 300 °C, which was more than 60% for both. In addition, compared to 0.5Pt/Ni1Mg2Al1Ox, 0.5Pt/Mn1Mg2Al1Ox exhibited a relatively higher SN2 and lower SN2O and SNH3. The NOx-TPD and H2-TPSR results indicated that NOx adsorbed on Ni1Mg2Al1Ox and 0.5Pt/Ni1Mg2Al1Ox is more stable, and that NH3 can be formed in large amounts in a lower temperature range. Both Pt-containing catalysts presented a quite stable XNO in ten cycles in the presence of 100 ppm SO2, and their SN2 can be remarkably enhanced to more than 80%, which could be attributed to the reactions of NH3-SCR and SO2 + NH3. We believe this new insight can provide a new way of thinking for the development of NSR catalysts.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, P. R. China.
| | | | | | | |
Collapse
|
11
|
Wu X, Meng H, Du Y, Liu J, Hou B, Xie X. Insight into Cu2O/CuO collaboration in the selective catalytic reduction of NO with NH3: Enhanced activity and synergistic mechanism. J Catal 2020. [DOI: 10.1016/j.jcat.2020.01.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Du Y, Liu J, Li X, Liu L, Wu X. SCR performance enhancement of NiMnTi mixed oxides catalysts by regulating assembling methods of LDHs‐Based precursor. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yali Du
- College of Chemistry and Chemical EngineeringJinzhong University Jinzhong 030619 People's Republic of China
| | - Jiangning Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xiaojian Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Lili Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| | - Xu Wu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 People's Republic of China
| |
Collapse
|
13
|
A Critical Review of Recent Progress and Perspective in Practical Denitration Application. Catalysts 2019. [DOI: 10.3390/catal9090771] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitrogen oxides (NOx) represent one of the main sources of haze and pollution of the atmosphere as well as the causes of photochemical smog and acid rain. Furthermore, it poses a serious threat to human health. With the increasing emission of NOx, it is urgent to control NOx. According to the different mechanisms of NOx removal methods, this paper elaborated on the adsorption method represented by activated carbon adsorption, analyzed the oxidation method represented by Fenton oxidation, discussed the reduction method represented by selective catalytic reduction, and summarized the plasma method represented by plasma-modified catalyst to remove NOx. At the same time, the current research status and existing problems of different NOx removal technologies were revealed and the future development prospects were forecasted.
Collapse
|
14
|
Liu X, Du Y, Zou C, Liu L, Yang B, Wu X. NH
3
‐SCR Performance Enhancement of LDHs‐Based NiMnFe‐Mixed Oxides by Two‐Phase Coexistence and Cooperation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuezhen Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Yali Du
- College of Chemistry and Chemical EngineeringJinzhong University Jinzhong 030619 PR China
| | - Chunlei Zou
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Lili Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Baoshuan Yang
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| | - Xu Wu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology Taiyuan 030024 PR China
| |
Collapse
|
15
|
Hou B, Du Y, Liu X, Ci C, Wu X, Xie X. Tunable preparation of highly dispersed Ni x Mn-LDO catalysts derived from Ni x Mn-LDHs precursors and application in low-temperature NH 3-SCR reactions. RSC Adv 2019; 9:24377-24385. [PMID: 35527889 PMCID: PMC9069834 DOI: 10.1039/c9ra04578c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/25/2019] [Indexed: 01/12/2023] Open
Abstract
A series of Ni x Mn bimixed metal oxides (Ni x Mn-LDO) were prepared via calcining Ni x Mn layered double hydroxides (Ni x Mn-LDHs) precursors at 400 °C and applied as catalysts in the selective catalytic reduction (SCR) of NO x with NH3. The DeNO x performance of catalysts was optimized by adjusting the Ni/Mn molar ratios of Ni x Mn-LDO precursors, in which Ni5Mn-LDO exhibited above 90% NO x conversion and N2 selectivity at a temperature zone of 180-360 °C. Besides, Ni5Mn-LDO possessed considerable SO2 & H2O resistance and outstanding stability. Multiple characterization techniques were used to analyze the physicochemical properties of the catalysts. The analysis results indicated that all catalysts had the same active species Ni6MnO8, while their particle sizes showed significant differences. Notably, the uniform distribution of active species particles in the Ni5Mn-LDO catalyst provided the rich surface acidity and suitable redox ability which were the primary causes for its desirable DeNO x property.
Collapse
Affiliation(s)
- Benhui Hou
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Yali Du
- College of Chemistry and Chemical Engineering, Jinzhong University Jinzhong 030619 PR China
| | - Xuezhen Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Chao Ci
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xu Wu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| | - Xianmei Xie
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology Taiyuan 030024 PR China +86-351-6018528 +86-351-6018564 +86-351-6018528 +86-351-6018564
| |
Collapse
|