1
|
Pan Y, Bao J, Zhang X, Ni H, Zhao Y, Zhi F, Fang B, He X, Zhang JZH, Zhang L. Rational Design of P450 aMOx for Improving Anti-Markovnikov Selectivity Based on the “Butterfly” Model. Front Mol Biosci 2022; 9:888721. [PMID: 35677881 PMCID: PMC9168652 DOI: 10.3389/fmolb.2022.888721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/15/2022] [Indexed: 11/13/2022] Open
Abstract
Aromatic aldehydes are important industrial raw materials mainly synthesized by anti-Markovnikov (AM) oxidation of corresponding aromatic olefins. The AM product selectivity remains a big challenge. P450 aMOx is the first reported enzyme that could catalyze AM oxidation of aromatic olefins. Here, we reported a rational design strategy based on the “butterfly” model of the active site of P450 aMOx. Constrained molecular dynamic simulations and a binding energy analysis of key residuals combined with an experimental alanine scan were applied. As a result, the mutant A275G showed high AM selectivity of >99%. The results also proved that the “butterfly” model is an effective design strategy for enzymes.
Collapse
Affiliation(s)
- Yue Pan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jinxiao Bao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xingyi Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yue Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Fengdong Zhi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Bohuan Fang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| | - John Z. H. Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- Department of Chemistry, New York University, New York, NY, United States
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, China
- *Correspondence: Xiao He, ; John Z. H. Zhang, ; Lujia Zhang,
| |
Collapse
|
2
|
Zhang M, Li W, Zhou Z, Zhuo S, Su Z. Green Catalytic Method for Hydrothiolation of Allylamines: An External Electric Field. ACS OMEGA 2022; 7:5782-5790. [PMID: 35224338 PMCID: PMC8867569 DOI: 10.1021/acsomega.1c05741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 05/28/2023]
Abstract
Based on the idea of environmental friendliness, we first studied the hydrothiolation reactions of thiophenol with allylamine using a green catalyst-an external electric field (EEF). The hydrothiolation reactions could occur through Markovnikov addition (path M) and anti-Markovnikov addition (path AM) pathways. The calculation results demonstrated that when the EEF was oriented along F -X , F -Y , and F +Z directions, path M was accelerated. However, it is favorable for path AM only when the EEF is oriented along the +X and -Y-axes. In addition, the introduction of the EEF further increased and lowered the differences of the reaction barrier as the EEF was oriented along F -X , F -Y , and F +X directions. The solvent effects were also considered in this work. Hopefully, this unprecedented and green catalytic method for the hydrothiolation reactions of allylamine may provide guidance in the lab.
Collapse
Affiliation(s)
- Mingxia Zhang
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Wenzuo Li
- School
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, China
| | - Ziyan Zhou
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Shuping Zhuo
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Zhongmin Su
- Institute
of Functional Material Chemistry, Department of Chemistry, National
& Local United Engineering Lab for Power Battery, Northeast Normal University, Jilin 130024, China
- Shandong
Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
3
|
Mononuclear Copper(I) 3-(2-pyridyl)pyrazole Complexes: The Crucial Role of Phosphine on Photoluminescence. Molecules 2021; 26:molecules26226869. [PMID: 34833961 PMCID: PMC8620892 DOI: 10.3390/molecules26226869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/02/2022] Open
Abstract
A series of emissive Cu(I) cationic complexes with 3-(2-pyridyl)-5-phenyl-pyrazole and various phosphines: dppbz (1), Xantphos (2), DPEPhos (3), PPh3 (4), and BINAP (5) were designed and characterized. Complexes obtained exhibit bright yellow-green emission (ca. 520–650 nm) in the solid state with a wide range of QYs (1–78%) and lifetimes (19–119 µs) at 298 K. The photoluminescence efficiency dramatically depends on the phosphine ligand type. The theoretical calculations of buried volumes and excited states explained the emission behavior for 1–5 as well as their lifetimes. The bulky and rigid phosphines promote emission efficiency through the stabilization of singlet and triplet excited states.
Collapse
|