1
|
Yamaguchi D. Cellulose hydrolysis reactor incorporating stirring apparatus for use with carbon-based solid acid catalyst. Heliyon 2023; 9:e22723. [PMID: 38125460 PMCID: PMC10730584 DOI: 10.1016/j.heliyon.2023.e22723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
A highly efficient reactor with a stirring device was specially designed with the intent of performing the hydrolysis of pure crystalline cellulose using a carbon-based solid acid catalyst. This catalyst comprised an amorphous carbon-based material bearing -SO3H, -COOH and -OH groups. The stirring apparatus had seven blades coated with polytetrafluoroethylene and arranged axially at regular intervals with a 60° offset. This design proved highly effective, providing double the glucose yield compared with conventional stirring systems. The basic properties of this novel reactor were investigated and analyzed and are discussed herein.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
2
|
Yamaguchi D. Powder properties of carbon-based solid acid catalyst for designing cellulose hydrolysis reactor with stirring apparatus. Heliyon 2023; 9:e21805. [PMID: 38034806 PMCID: PMC10682613 DOI: 10.1016/j.heliyon.2023.e21805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
The powder properties of a carbon-based solid acid catalyst, an amorphous carbon material bearing SO3H, COOH and OH groups, were investigated for the hydrolysis of cellulose. The Carr flowability and floodability indices, the angle of internal friction (adherence), and the particle size distribution and shape for the powder catalyst were determined. The need to develop a special reactor with a stirring apparatus for the hydrolysis of cellulose was determined based on the Carr flowability index. Insight into the interaction or adherence between the catalyst and crystalline cellulose during the hydrolysis process was gained by measuring the internal friction angle. The optimum moisture content in the catalyst to achieve the maximum adherence was investigated.
Collapse
Affiliation(s)
- Daizo Yamaguchi
- National Institute of Technology, Tsuyama College, 624-1, Numa, Tsuyama-City, Okayama 708-8509, Japan
| |
Collapse
|
3
|
Chin SY, Shahruddin S, Chua GK, Samsudin NA, Mudalip SKA, Ghazali NFS, Jemaat Z, Salleh SF, Said FM, Nadir N, Ismail NL, Ng SH. Toward Sustainable Production of Sugar-Based Alkyl Polyglycoside Surfactant─A Comprehensive Review on Synthesis Route and Downstream Processing. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Sim Yee Chin
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Sara Shahruddin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Gek Kee Chua
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Nur Amalina Samsudin
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Siti Kholijah Abdul Mudalip
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Noor Fadhila Syahida Ghazali
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Zulkifly Jemaat
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Siti Fatihah Salleh
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Farhan Mohd Said
- Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang Darul Makmur Malaysia
| | - Najiah Nadir
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Nur Liyana Ismail
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| | - Su Han Ng
- PETRONAS Research Sdn. Bhd., Lot 3288 and 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor Darul Ehsan Malaysia
| |
Collapse
|
4
|
Nanostructured Functionalised Niobium Oxide as Chemoselective Catalyst for Acetalation of Glucose. Top Catal 2022. [DOI: 10.1007/s11244-022-01738-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yu M, Li Y, Zhang C, Luo H, Ge C, Chen X, Fu L, Ju Z, Yao X. Fischer-Helferich glycosidation mechanism of glucose to methyl glycosides over Al-based catalysts in alcoholic media. RSC Adv 2022; 12:23416-23426. [PMID: 36090444 PMCID: PMC9382650 DOI: 10.1039/d2ra03945a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022] Open
Abstract
The Fischer-Helferich glycosidation reaction is generally the initial step in the conversion of glucose to levulinate in alcohol media. However, the relevant molecular mechanism catalyzed by Al-based catalysts is still not well understood. In this work, the reaction mechanism of the glycosidation from glucose to methyl glycosides catalyzed by Al3+ coordinated with methanol/methoxyl was investigated through density functional theory (DFT) calculations. The whole reaction process includes ring-opening, addition, and ring-closure events. The addition of methanol to the ring-opening structure of glucose makes the electronegativity of C1 site stronger to proceed with the following ring-closure reaction. Among the 28 kinds of ways of ring-closure reaction, the most preferred way is to close the loop through the six-membered ring (O5-C1) to generate methyl glucoside (MDGP). The rate-determining step is the ring-closure and the Al3+ shows a great catalytic effect which is mainly reflected in coordinating with the solvents to transfer protons. The results would be helpful to understanding the Fischer-Helferich glycosidation mechanism catalyzed by Al-based catalysts and comprehend the conversion of glucose to high value-added chemicals.
Collapse
Affiliation(s)
- Mengting Yu
- College of Chemical & Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Yao Li
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| | | | | | - Chengsheng Ge
- College of Chemical & Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Xiaobin Chen
- College of Chemical & Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Lanlan Fu
- College of Chemical & Material Engineering, Quzhou University Quzhou 324000 P. R. China
| | - Zhaoyang Ju
- College of Chemical & Material Engineering, Quzhou University Quzhou 324000 P. R. China
- Xianhe Co., Ltd Quzhou 324000 P. R. China
| | - Xiaoqian Yao
- CAS Key Laboratory of Green Process and Engineering, Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
6
|
Ratthachag T, Buntasana S, Vilaivan T, Padungros P. Surfactant-mediated thioglycosylation of 1-hydroxy sugars in water. Org Biomol Chem 2021; 19:822-836. [PMID: 33403378 DOI: 10.1039/d0ob02246b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioglycosides are an important class of sugars, since they can be used as non-ionic biosurfactants, biomimetic glycosides, and building blocks for carbohydrate synthesis. Previously, Brønsted- or Lewis-acid-catalyzed dehydrative glycosylations between a 1-hydroxy sugar and a thiol have been reported to yield open-chain dithioacetal sugars as the major products instead of the desired thioglycosides. These dithioacetal sugars are by-products derived from the endocyclic bond cleavage of the thioglycosides. Herein, we report dehydrative glycosylation in water mediated by a Brønsted acid-surfactant combined catalyst (BASC). Glycosylations between 1-hydroxy furanosyl/pyranosyl sugars and primary, secondary, and tertiary aliphatic/aromatic thiols in the presence of dodecyl benzenesulfonic acid (DBSA) provided the thioglycoside products in moderate to good yields. Microwave irradiation led to improvements in the yields and a shortening of the reaction time. Remarkably, open-chain dithioacetal sugars were not detected in the DBSA-mediated glycosylations in water. This method is a simple, convenient, and rapid approach to produce a library of thioglycosides without the requirement of anhydrous conditions. Moreover, this work also provides an excellent example of complementary reactivity profiles of glycosylation in organic solvents and water.
Collapse
Affiliation(s)
- Trichada Ratthachag
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Supanat Buntasana
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| | - Tirayut Vilaivan
- Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Panuwat Padungros
- Green Chemistry for Fine Chemical Productions STAR, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
7
|
Fu F, Fan Y, Chen L, Zhang J, Li J. Water Solubility and Surface Activity of Alkoxyethyl β-d-Maltosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8330-8340. [PMID: 32677832 DOI: 10.1021/acs.jafc.0c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green surfactants alkyl glycosides are key to solve the inherent problem of water solubility due to their commercial application and extensive scientific research. Based on the enhancement strategy of hydrophilicity through the reconstruction of the conventional alkyl β-d-maltoside by introducing an oxyethyl group (-OCH2CH2-), d-maltose was used to prepare a series of nonionic disaccharide-based surfactants alkoxyethyl β-d-maltosides (4a-h, n = 6-16) so that the related water solubility was effectively improved, while the corresponding surface activity and other excellent properties were still maintained. Their physicochemical properties, including water solubility, surface activity, moisture absorption, and thermotropic liquid crystalline behavior, were investigated. The liquid crystal texture of alkoxyethyl β-d-maltosides (n = 7-16) has a fan-shaped focal conic texture. Furthermore, decoxyethyl β-d-maltoside had the strongest foaming characteristic and the best foam stability. Moreover, dodecoxyethyl β-d-maltoside (4f, n =12) had stronger emulsifying activity in the rapeseed oil/water system. Finally, CTAC/4f binary surfactants had an obvious synergistic effect. Such β-d-maltosides should have good application prospects in the future.
Collapse
Affiliation(s)
- Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|
8
|
Selenium-incorporated polymeric carbon nitride for visible-light photocatalytic regio-specific epoxidation of β-ionone. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
9
|
Tran TTV, Kongparakul S, Karnjanakom S, Reubroycharoen P, Guan G, Chanlek N, Samart C. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
10
|
Azizi N, Edrisi M. Preparation of choline sulfate ionic liquid supported on porous graphitic carbon nitride nanosheets by simple surface modification for enhanced catalytic properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112263] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|