Harris LC, Gaines RN, Hua Q, Lindsay GS, Griebler JJ, Kenis PJA, Gewirth AA. Effect of glycerol concentration on rate and product speciation for Ni and Au-based catalysts.
Phys Chem Chem Phys 2025. [PMID:
40289671 DOI:
10.1039/d4cp04013a]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In this paper, we investigate the glycerol electrooxidation reaction (GEOR) on Au and Ni catalysts, specifically the effect of glycerol concentration on electrochemical activity and product speciation for GEOR in an electrochemical flow cell system. With Au foil, cyclic voltammogram behavior shifted from hysteretic to near-linear by increasing the concentration of glycerol from 0.1 M to 1 M. As a result, glycerol electrooxidation increased up to 1.4 V vs. RHE with a higher glycerol concentration. The major products were formic acid and glycolic acid, yet minor products of value-added glyceric acid, lactic acid, and dihydroxyacetone were observed at a higher glycerol concentration. Competition between glycerol and the Au surface for hydroxide inhibits the formation of poisoning Au oxide (AuOx) species and enables the formation of low degree oxidation products. With Ni foil, the GEOR peak current density in cyclic voltammetry increased with glycerol concentration, however, formation of the major product, formic acid, decreased. This study examines and utilizes differences in GEOR mechanism on Ni vs. Au catalysts to vary product speciation in flow cell systems.
Collapse