1
|
Escayola S, Bahri-Laleh N, Poater A. % VBur index and steric maps: from predictive catalysis to machine learning. Chem Soc Rev 2024; 53:853-882. [PMID: 38113051 DOI: 10.1039/d3cs00725a] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Steric indices are parameters used in chemistry to describe the spatial arrangement of atoms or groups of atoms in molecules. They are important in determining the reactivity, stability, and physical properties of chemical compounds. One commonly used steric index is the steric hindrance, which refers to the obstruction or hindrance of movement in a molecule caused by bulky substituents or functional groups. Steric hindrance can affect the reactivity of a molecule by altering the accessibility of its reactive sites and influencing the geometry of its transition states. Notably, the Tolman cone angle and %VBur are prominent among these indices. Actually, steric effects can also be described using the concept of steric bulk, which refers to the space occupied by a molecule or functional group. Steric bulk can affect the solubility, melting point, boiling point, and viscosity of a substance. Even though electronic indices are more widely used, they have certain drawbacks that might shift preferences towards others. They present a higher computational cost, and often, the weight of electronics in correlation with chemical properties, e.g. binding energies, falls short in comparison to %VBur. However, it is worth noting that this may be because the steric index inherently captures part of the electronic content. Overall, steric indices play an important role in understanding the behaviour of chemical compounds and can be used to predict their reactivity, stability, and physical properties. Predictive chemistry is an approach to chemical research that uses computational methods to anticipate the properties and behaviour of these compounds and reactions, facilitating the design of new compounds and reactivities. Within this domain, predictive catalysis specifically targets the prediction of the performance and behaviour of catalysts. Ultimately, the goal is to identify new catalysts with optimal properties, leading to chemical processes that are both more efficient and sustainable. In this framework, %VBur can be a key metric for deepening our understanding of catalysis, emphasizing predictive catalysis and sustainability. Those latter concepts are needed to direct our efforts toward identifying the optimal catalyst for any reaction, minimizing waste, and reducing experimental efforts while maximizing the efficacy of the computational methods.
Collapse
Affiliation(s)
- Sílvia Escayola
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Naeimeh Bahri-Laleh
- Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Hiroshima, 739-8526, Japan
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain.
| |
Collapse
|
2
|
Parfenova LV, Bikmeeva AK, Kovyazin PV, Khalilov LM. The Dimerization and Oligomerization of Alkenes Catalyzed with Transition Metal Complexes: Catalytic Systems and Reaction Mechanisms. Molecules 2024; 29:502. [PMID: 38276580 PMCID: PMC10820739 DOI: 10.3390/molecules29020502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Dimers and oligomers of alkenes represent a category of compounds that are in great demand in diverse industrial sectors. Among the developing synthetic methods, the catalysis of alkene dimerization and oligomerization using transition metal salts and complexes is of undoubted interest for practical applications. This approach demonstrates substantial potential, offering not only elevated reaction rates but also precise control over the chemo-, regio-, and stereoselectivity of the reactions. In this review, we discuss the data on catalytic systems for alkene dimerization and oligomerization. Our focus lies in the analysis of how the activity and chemoselectivity of these catalytic systems are influenced by various factors, such as the nature of the transition metal, the ligand environment, the activator, and the substrate structure. Notably, this review particularly discusses reaction mechanisms, encompassing metal complex activation, structural and dynamic features, and the reactivity of hydride intermediates, which serve as potential catalytically active centers in alkene dimerization and oligomerization.
Collapse
Affiliation(s)
- Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospekt Oktyabrya, Ufa 450075, Russia
| | | | | | | |
Collapse
|
3
|
Nifant’ev IE, Vinogradov AA, Vinogradov AA, Bagrov VV, Kiselev AV, Minyaev ME, Samurganova TI, Ivchenko PV. Heterocene Catalysts and Reaction Temperature Gradient in Dec-1-ene Oligomerization for the Production of Low Viscosity PAO Base Stocks. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
4
|
Metallic–Organic Cages (MOCs) with Heterometallic Character: Flexibility-Enhancing MOFs. Catalysts 2023. [DOI: 10.3390/catal13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dichotomy between metal–organic frameworks (MOFs) and metal–organic cages (MOCs) opens up the research spectrum of two fields which, despite having similarities, both have their advantages and disadvantages. Due to the fact that they have cavities inside, they also have applicability in the porosity sector. Bloch and coworkers within this evolution from MOFs to MOCs manage to describe a MOC with a structure of Cu2 paddlewheel Cu4L4 (L = bis(pyrazolyl)methane) with high precision thanks to crystallographic analyses of X-ray diffraction and also SEM-EDX. Then, also at the same level of concreteness, they were able to find the self-assembly of Pd(II)Cl2 moieties on the available nitrogen donor atoms leading to a [Cu4(L(PdCl2))4] structure. Here, calculations of the DFT density functional allow us to reach an unusual precision given the magnitude and structural complexity, explaining how a pyrazole ring of each bis(pyprazolyl)methane ligand must rotate from an anti to a syn conformation, and a truncation of the MOC structure allows us to elucidate, in the absence of the MOC constraint and its packing in the crystal, that the rotation is almost barrierless, as well as also explain the relative stability of the different conformations, with the anti being the most stable conformation. Characterization calculations with Mayer bond orders (MBO) and noncovalent interaction (NCI) plots discern what is important in the interaction of this type of cage with PdCl2 moieties, also CuCl2 by analogy, as well as simple molecules of water, since the complex is stable in this solvent. However, the L ligand is proved to not have the ability to stabilize an H2O molecule.
Collapse
|
5
|
Rahbar A, Falcone B, Pareras G, Nekoomanesh-Haghighi M, Bahri-Laleh N, Poater A. Chain Walking in the AlCl 3 Catalyzed Cationic Polymerization of α-Olefins. Chempluschem 2023; 88:e202200432. [PMID: 36592006 DOI: 10.1002/cplu.202200432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Continuing efforts aimed at performing the 1-decene polymerization to low viscosity polyalphaolefins (PAO)s using a less hazardous AlCl3 catalyst than boron-based analogs, the basic mechanisms of this system were revealed in this research. In this aspect, neat AlCl3 and AlCl3 /toluene were carried out to perform 1-decene polymerizations. Microstructure analyses of the as-synthesized oils revealed low molecular weight (708 vs. 1529 g/mol), kinematic viscosity (KV100 =6.4 vs. 22.2 cSt), and long chain branching (82.1 vs. 84.7) of PAO from the system containing toluene solvent. Furthermore, NMR analysis confirmed various types of short chain branch (SCB) with the inclusion of toluene ring in the structure of final PAO chains. Then, to shed light on the basic mechanisms of cationic polymerization of 1-decene including: i) chain initiation, ii) chain transfer to the monomer, iii) isomerization of the carbocation via a chain walking mechanism (causes different SCB length), and iv) binding of toluene ring to the propagating PAO chain (to yield aromatic containing oligomers), molecular modeling at the DFT level was employed. The energies obtained confirmed the ease of carbocation isomerization and chain transfer mechanisms in toluene medium, which well confirms the highly branched structure experimentally obtained for related PAO.
Collapse
Affiliation(s)
- Amene Rahbar
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Bruno Falcone
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
- School of Chemistry, University College Cork, College Road, T12 K8AF, Cork, Ireland
| | - Gerard Pareras
- School of Chemistry, University College Cork, College Road, T12 K8AF, Cork, Ireland
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Mª Aurèlia Capmany 69, 17003, Girona, Spain
| | - Mehdi Nekoomanesh-Haghighi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Naeimeh Bahri-Laleh
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, Mª Aurèlia Capmany 69, 17003, Girona, Spain
| |
Collapse
|
6
|
Yang S, Yu X, Poater A, Cavallo L, Cazin CSJ, Nolan SP, Szostak M. Buchwald-Hartwig Amination and C-S/S-H Metathesis of Aryl Sulfides by Selective C-S Cleavage Mediated by Air- and Moisture-Stable [Pd(NHC)(μ-Cl)Cl] 2 Precatalysts: Unified Mechanism for Activation of Inert C-S Bonds. Org Lett 2022; 24:9210-9215. [PMID: 36480689 DOI: 10.1021/acs.orglett.2c03717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report a combined experimental and mechanistic study on the Buchwald-Hartwig amination and C-S/S-H metathesis of aryl sulfides by selective activation of C-S bonds mediated by well-defined, air- and moisture-stable Pd(II)-NHC precatalysts, [Pd(NHC)(μ-Cl)Cl]2. This class of Pd(II)-NHC precatalysts displays excellent activity in the cross coupling of aryl sulfides. Most crucially, we unravel the unified mechanism for activation of C-S bonds in the C-N cross-coupling and C-S metathesis manifolds, where the inert C-S bond serves as a precursor to valuable amine or thioether products.
Collapse
Affiliation(s)
- Shiyi Yang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Xiang Yu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, c/Maria Aurèlia Capmany 69, Campus Montilivi, 17003 Girona, Catalonia, Spain
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science & Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, B-9000 Ghent, Belgium
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
7
|
A Novel Method for Dynamic Molecular Weight Distribution Determination in Organometallic Catalyzed Olefin Polymerizations. Catalysts 2022. [DOI: 10.3390/catal12101130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this study, a mathematical model for the time evolution of molecular weight distribution (MWD) was developed. This temporal model is based on the well-known Ziegler–Natta polymerization mechanism and reaction kinetics by the parametric solving of related differential equations. However, due to the generality of the reactions involved, the model can be extended to the other type of catalysts, such as metallocenes, Phillips, etc. The superiority of this model lies in providing the possibility of a more precise prediction over the active sites and kinetic parameters using a simple mathematical equation, which leads to improved reactor design in large-scale production. The model uses a function to develop a methodology for MWD calculations. In this way, the transient response is limited to the first few minutes of the reaction; however, it is important as it demonstrates the establishment of the final MWD. According to the results, almost for practical conditions with negligible transfer resistances, the time dependency of the MWD has a transient interval, depending on the kinetic constants of polymerization reactions. Increasing the time to infinity results in an increase in MW and a widening in MWD, which confirms the experimental plots well. In short, the main advantage of our proposed model over the previous ones is its ability to predict the MWD even before the completion of the polymerization reaction. The results of the present model match well with those of the well-known Schulz–Flory distribution, which only predicts the final molecular weight distribution, thus confirming that the model is reliable and generalizable.
Collapse
|
8
|
Eutectic solvents containing Al-compounds: new benign alternatives to BF3 co-initiator in producing low viscosity polyalphaolefin oils. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Asadi Z, Sadjadi S, Nekoomanesh‐Haghighi M, Posada‐Pérez S, Solà M, Bahri‐Laleh N, Poater A. Lubricant hydrogenation over a functionalized clay‐based Pd catalyst: A combined computational and experimental study. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zahra Asadi
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals Iran Polymer and Petrochemical Institute Tehran Iran
| | | | - Sergio Posada‐Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| |
Collapse
|
10
|
Zhao Y, Xu X, Wang Y, Liu T, Li H, Zhang Y, Wang L, Wang X, Zhao S, Luo Y. Ancillary ligand effects on α-olefin polymerization catalyzed by zirconium metallocene: a computational study. RSC Adv 2022; 12:21111-21121. [PMID: 35975060 PMCID: PMC9341425 DOI: 10.1039/d2ra03180a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/18/2022] [Indexed: 01/31/2023] Open
Abstract
The polymerization of α-olefins catalyzed by zirconium metallocene catalyst was systematically studied through experiments and density functional theory (DFT) calculations. Having achieved an agreement between theory and experiment, it was found that the effect of the catalyst ligand on the C[double bond, length as m-dash]C insertion reaction was significantly greater than that on the β-H elimination reaction. Therefore, the molecular weight of polymers can be increased by improving the activity of the C[double bond, length as m-dash]C insertion. In addition, in comparison with propylene, the chain length of α-olefins can directly affect the stereotacticity of polymerization products, owing to steric hindrance between the polymer chain and monomer.
Collapse
Affiliation(s)
- Yanan Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
| | - Xianming Xu
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Yulong Wang
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Tong Liu
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Hongpeng Li
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Yongjun Zhang
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Libo Wang
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Xiuhui Wang
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Simeng Zhao
- Daqing Petrochemical Research Center of PetroChina Daqing 163714 China
| | - Yi Luo
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 China
- PetroChina Petrochemical Research Institute Beijing 102206 China
| |
Collapse
|
11
|
Bayat A, Sadjadi S, Arabi H, Bahri-Laleh N. Dual-task composite of halloysite and ionic liquid for the synthesis and hydrogenation of polyalphaolefins. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Shams A, Sadjadi S, Duran J, Simon S, Poater A, Bahri‐Laleh N. Effect of support hydrophobicity of halloysite based catalysts on the PAO hydrofinishing performance. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Arash Shams
- Department of Polymer Engineering and Color Technology Amirkabir University of Technology Tehran Iran
| | - Samahe Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals Iran Polymer and Petrochemical Institute Tehran Iran
| | - Josep Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Sílvia Simon
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona Girona Catalonia Spain
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| |
Collapse
|
13
|
Rezaeian A, Hanifpour A, Teimoury HR, Nekoomanesh-Haghighi M, Ahmadi M, Bahri-Laleh N. Synthesis of highly spherical Ziegler–Natta catalyst by employing Span 80 as an emulsifier suitable for UHMWPE production. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04122-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
|
15
|
Escayola S, Brotons-Rufes A, Bahri-Laleh N, Ragone F, Cavallo L, Solà M, Poater A. Fluxional bis(phenoxy-imine) Zr and Ti catalysts for polymerization. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02747-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Hanifpour A, Bahri‐Laleh N, Nekoomanesh‐Haghighi M, Poater A. 1‐Decene oligomerization by new complexes bearing diamine‐diphenolates ligands: Effect of ligand structure. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ahad Hanifpour
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Naeimeh Bahri‐Laleh
- Polymerization Engineering Department Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | | | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química Universitat de Girona c/M. Aurèlia Capmany 69 Girona Catalonia E‐17003 Spain
| |
Collapse
|
17
|
Selective Trimerization of α-Olefins with Immobilized Chromium Catalyst for Lubricant Base Oils. Catalysts 2020. [DOI: 10.3390/catal10090990] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The demand for poly(α-olefin)s (PAOs), which are high-performance group IV lubricant base oils, is increasingly high. PAOs are generally produced via the cationic oligomerization of 1-decene, wherein skeleton rearrangement inevitably occurs in the products. Hence, a transition-metal-based catalytic process that avoids rearrangement would be a valuable alternative for cationic oligomerization. In particular, transition-metal-catalyzed selective trimerization of α-olefins has the potential for success. In this study, (N,N′,N″-tridodecyltriazacyclohexane)CrCl3 complex was reacted with MAO-silica (MAO, methylaluminoxane) for the preparation of a supported catalyst, which exhibited superior performance in selective α-olefin trimerization compared to that of the corresponding homogeneous catalyst, enabling the preparation of α-olefin trimers at ~200 g scale. Following hydrogenation, the prepared 1-decene trimer (C30H62) exhibited better lubricant properties than those of commercial-grade PAO-4 (kinematic viscosity at 40 °C, 15.1 vs. 17.4 cSt; kinematic viscosity at 100 °C, 3.9 vs. 3.9 cSt; viscosity index, 161 vs. 123). Moreover, it was shown that 1-octene/1-dodecene mixed co-trimers (i.e., a mixture of C24H50, C28H58, C32H66, and C36H74), generated by the selective supported Cr catalyst, exhibited outstanding lubricant properties analogous to those observed for the 1-decene trimer (C30H62).
Collapse
|