1
|
Lopes JC, Peñas-Garzón M, Sampaio MJ, Silva CG, Faria JL. Photocatalytic Oxidative Coupling of Benzyl Alcohol and Benzylamine for Imine Synthesis Using Immobilized Cs 3Bi 2Br 9 Perovskite. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409037. [PMID: 39711300 DOI: 10.1002/smll.202409037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Indexed: 12/24/2024]
Abstract
The oxidative cross-coupling of benzyl alcohol (BA) and benzylamine (BZA) is employed for the production of the corresponding imine, N-benzylidenebenzylamine (BZI), under visible light irradiation (light-emitting diodes (LE with λmax = 417 nm) and mild reaction conditions. The cesium bismuth halide perovskites (Cs2Bi3Br9, CBB) are synthesized by a one-step solution process as a sustainable alternative for the widely used Pb-halide perovskites. The CBB photocatalyst is immobilized on a polyethylene terephthalate (PET) structure designed explicitly for three-dimensional (3D) printing to operate in both batch and continuous modes to overcome the need for a final catalyst separation step. The complete conversion of BZA and BA is achieved after 1 h, yielding 70% of BZI in basic medium operating in batch mode. Comparable results are found between the suspended and immobilized catalysts for imine production. Additionally, continuous production of BZI is successfully achieved using immobilized CBB, with a maximum yield of 0.35 mm of BZI after a 2 h reaction. The supported CBB perovskites demonstrate high stability after multiple uses. Finally, a comprehensive photocatalytic pathway for cross-coupling BZA with BA is proposed.
Collapse
Affiliation(s)
- Joana C Lopes
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
| | - Manuel Peñas-Garzón
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
| | - Maria J Sampaio
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
| | - Cláudia G Silva
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
| | - Joaquim L Faria
- LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal
| |
Collapse
|
2
|
Li B, Liu XJ, Zhu HW, Guan HP, Guo RT. A Review on Bi 2WO 6-Based Materials for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406074. [PMID: 39370667 DOI: 10.1002/smll.202406074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Photocatalytic reduction of CO2 (PCR) technology offers the capacity to transmute solar energy into chemical energy through an eco-friendly and efficacious process, concurrently facilitating energy storage and carbon diminution, this innovation harbors significant potential for mitigating energy shortages and ameliorating environmental degradation. Bismuth tungstate (Bi2WO6) is distinguished by its robust visible light absorption and distinctive perovskite-type crystal architecture, rendering it highly efficiency in PCR. In recent years, numerous systematic strategies have been investigated for the synthesis and modification of Bi2WO6 to enhance its photocatalytic performance, aiming to achieve superior applications. This review provides a comprehensive review of the latest research progress on Bi2WO6 based materials in the field of photocatalysis. Firstly, outlining the fundamental principles, associated reaction mechanisms and reduction pathways of PCR. Then, the synthesis strategy of Bi2WO6-based materials is introduced for the regulation of its photocatalytic properties. Furthermore, accentuating the extant applications in CO2 reduction, including metal-Bi2WO6, semiconductor-Bi2WO6 and carbon-based Bi2WO6 composites etc. while concludes with an examination of the future landscape and challenges faced. This review hopes to serve as an effective reference for the continuous improvement and implementation of Bi2WO6-based photocatalysts in PCR.
Collapse
Affiliation(s)
- Bo Li
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Xiao-Jing Liu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hao-Wen Zhu
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Hua-Peng Guan
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy Source and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
| |
Collapse
|
3
|
Khedr TM, El-Sheikh SM, Endo-Kimura M, Wang K, Ohtani B, Kowalska E. Development of Sulfur-Doped Graphitic Carbon Nitride for Hydrogen Evolution under Visible-Light Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:62. [PMID: 36615972 PMCID: PMC9824438 DOI: 10.3390/nano13010062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C3N4 photocatalyst through simultaneous pyrolysis of urea (main g-C3N4 precursor) and ammonium sulfate (sulfur source and structure promoter). Different content of ammonium sulfate was examined to find the optimal synthesis conditions and to investigate the property-governed activity. The physicochemical properties of the obtained photocatalysts were analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), specific surface area (BET) measurement, ultraviolet-visible light diffuse reflectance spectroscopy (UV/vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and reversed double-beam photo-acoustic spectroscopy (RDB-PAS). The as-prepared S-doped g-C3N4 photocatalysts were applied for photocatalytic H2 evolution under vis irradiation. The condition-dependent activity was probed to achieve the best photocatalytic performance. It was demonstrated that ammonium sulfate played a crucial role to achieve concurrently 2D morphology, controlled nanostructure, and S-doping of g-C3N4 in a one-pot process. The 2D nanoporous S-doped g-C3N4 of crumpled lamellar-like structure with large specific surface area (73.8 m2 g-1) and improved electron-hole separation showed a remarkable H2 generation rate, which was almost one order in magnitude higher than that of pristine g-C3N4. It has been found that though all properties are crucial for the overall photocatalytic performance, efficient doping is probably a key factor for high photocatalytic activity. Moreover, the photocatalysts exhibit significant stability during recycling. Accordingly, a significant potential of S-doped g-C3N4 has been revealed for practical use under natural solar radiation.
Collapse
Affiliation(s)
- Tamer M. Khedr
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Said M. El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), Cairo 11421, Egypt
| | - Maya Endo-Kimura
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Kunlei Wang
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, N21, W10, Sapporo 001-0021, Japan
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Han H, Liu L, Zhao Q, Jiang T. Application of Z‐scheme Bi
2
O
3
‐Ag
3
PO
4
Composite Photocatalyst in Degradation of Tetracycline and Methyl Orange. ChemistrySelect 2022. [DOI: 10.1002/slct.202202597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hui Han
- School of Chemistry and Chemical Engineering Jiangsu University 301 Xuefu Road Zhenjiang 212013 Jiangsu P. R. China
| | - Lei Liu
- School of Chemistry and Chemical Engineering Jiangsu University 301 Xuefu Road Zhenjiang 212013 Jiangsu P. R. China
| | - Qian Zhao
- School of Chemistry and Chemical Engineering Jiangsu University 301 Xuefu Road Zhenjiang 212013 Jiangsu P. R. China
| | - Tingshun Jiang
- School of Chemistry and Chemical Engineering Jiangsu University 301 Xuefu Road Zhenjiang 212013 Jiangsu P. R. China
| |
Collapse
|
5
|
Liu Y, Wang J, Ji K, Meng S, Luo Y, Li H, Ma P, Niu J, Wang J. Construction of Polyoxometalate-based Metal−Organic Frameworks through Covalent Bonds for Enhanced Visible Light-Driven Coupling of Alcohols with Amines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Jiang S, Zheng H, Sun X, Zhu M, Zhou Y, Wang D, Zhang D, Zhang L. New and highly efficient Ultra-thin g-C 3N 4/FeOCl nanocomposites as photo-Fenton catalysts for pollutants degradation and antibacterial effect under visible light. CHEMOSPHERE 2022; 290:133324. [PMID: 34921857 DOI: 10.1016/j.chemosphere.2021.133324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The photo-Fenton reaction was widely used in the removal of pollutants in waste water, which makes it exhibit great potential in the field of environmental remediation. Hence, it is crucial to explore a new efficient and stable photo-Fenton catalyst driven by visible light. In this work, a simple two-step calcination method was used to synthesize sheet-like stacked Ultra-thin g-C3N4/FeOCl (CNF) materials. The morphology, composition, photo-Fenton performance, and antibacterial properties were systematically analyzed. Research results exhibited that the synthesized CNF catalysts showed enhanced visible light absorption capacity and excellent photo-Fenton performance. Compared with FeOCl alone, CNF displayed stronger degradation ability for rhodamine B (RhB) and could achieve 97% degradation within 9 min, which was about 10 times that of pure FeOCl. At the same time, the composite catalysts exhibited excellent antibacterial effects under photo-Fenton conditions. The antibacterial rate of CNF composite catalyst under photo-Fenton conditions can reach almost 99%, which was 3 times that of photocatalysis alone and 2 times that of Fenton alone. The heterojunction formed between Ultra-thin g-C3N4 and FeOCl promoted the separation of e- and h+. Simultaneously, the presence of e- promoted the cycle of Fe3+ and Fe2+ in FeOCl, thereby promoting the generation of hydroxyl radicals (OH) from H2O2 and improving the photo-Fenton activity to achieve the effect of degrading pollutants and antibacterial. The photo-Fenton catalysis and degradation mechanism were analyzed in detail. This work provided a theoretical basis for the application of CNF material in the removal of wastewater.
Collapse
Affiliation(s)
- Shuangyan Jiang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Hongai Zheng
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China.
| | - Xin Sun
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Meilin Zhu
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Yao Zhou
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Derui Wang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Daquan Zhang
- College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China
| | - Lizhi Zhang
- Department of Orthopedic Surgery, Shanghai Yangpu District Central Hospital, Yangpu Hospital Affiliated to Tongji University, No. 450 Tengyue Road, Shanghai, 200090, China.
| |
Collapse
|
7
|
Zhang Z, Hao X, Hao S, Yu X, Wang Y, Li J. Preparation of 2D WO3 nanomaterials and their catalytic performance during the synthesis of imines under visible light irradiation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|