1
|
Li J, Mao A, Hu X, Wang L, Wang D, Duan ZC. Preparation of a novel cadmium-containing coordination polymer and catalytic application in the synthesis of N-alkylated aminoquinoline derivatives via the borrowing hydrogen approach. Dalton Trans 2024; 53:5064-5072. [PMID: 38375833 DOI: 10.1039/d3dt04221a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Herein, we report an efficient and straightforward approach for the synthesis of N-alkylated aminoquinoline derivatives by recyclable Cd-containing coordination polymer-catalyzed reactions of aminoquinolines with primary alcohols via the borrowing hydrogen strategy. In this work, a new type of coordination polymer [Cd(CIA)(phen)2(H2O)]n was successfully designed and fabricated. The molecular structure was corroborated by single-crystal X-ray diffraction and fully characterized by PXRD, FT-IR, TGA, and XPS. Importantly, this polymer revealed high catalytic activity for the N-alkylation reaction of 2-aminoquinoline and 8-aminoquinoline with inexpensive and low-toxicity alcohols as alkylating agents in excellent yields up to 95%. Interestingly, the present synthetic protocol was successfully applied for the gram-level synthesis of several biologically active compounds. In addition, several control reactions were carried out to investigate the possible mechanisms of this transformation. Finally, recycling experiments indicated that the cadmium coordination polymer showed good recovery performance for borrowing hydrogen reactions.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Anruo Mao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Likui Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, PR China.
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, PR China
| |
Collapse
|
2
|
Singh T, Atreya V, Jalwal S, Anand A, Chakraborty S. Advances in Group VI Metal-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions. Chem Asian J 2023; 18:e202300758. [PMID: 37815164 DOI: 10.1002/asia.202300758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Transition metal-catalyzed homogeneous hydrogenation and dehydrogenation reactions for attaining plethora of organic scaffolds have evolved as a key domain of research in academia and industry. These protocols are atom-economic, greener, in line with the goal of sustainability, eventually pave the way for numerous novel environmentally benign methodologies. Appealing progress has been achieved in the realm of homogeneous catalysis utilizing noble metals. Owing to their high cost, less abundance along with toxicity issues led the scientific community to search for sustainable alternatives. In this context, earth- abundant base metals have gained substantial attention culminating enormous progress in recent years, predominantly with pincer-type complexes of nickel, cobalt, iron, and manganese. In this regard, group VI chromium, molybdenum and tungsten complexes have been overlooked and remain underdeveloped despite their earth-abundance and bio-compatibility. This review delineates a comprehensive overview in the arena of homogeneously catalysed (de)hydrogenation reactions using group VI base metals chromium, molybdenum, and tungsten till date. Various reactions have been described; hydrogenation, transfer hydrogenation, dehydrogenation, acceptorless dehydrogenative coupling, hydrogen auto transfer, along with their scope and brief mechanistic insights.
Collapse
Affiliation(s)
- Tushar Singh
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Vaishnavi Atreya
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Sachin Jalwal
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Aman Anand
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| | - Subrata Chakraborty
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Jodhpur, 342037, Rajasthan
| |
Collapse
|
3
|
Donthireddy SNR, Siddique M, Rit A. N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. J Org Chem 2023; 88:1135-1146. [PMID: 36603160 DOI: 10.1021/acs.joc.2c02639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The "borrowing hydrogen" (BH) approach for the N-alkylation of phenylenediamines using alcohols as coupling partners is highly challenging due to the selectivity issue of the generated products. Furthermore, the development of base-metal systems that can potentially substitute precious metals with competitive activity is a major challenge in BH catalysis. We present herein an efficient protocol for the N,N'-di-alkylation of aromatic diamines using an in situ-generated Ni-NHC complex from NiCl2 and the ligand L1, which gave access to a wide range of N,N'-di-alkylated orthophenylene diamines (rather than the generally observed benzimidazole derivatives), meta- and para-phenylene diamines along with 2,6-diamino pyridine derivatives in good to excellent yields. Moreover, the catalyst system was also successful in the derivatization of a clinically important drug molecule, Dapsone. Notably, the present protocol could be applied effectively to synthesize unsymmetrically substituted N,N'-di-alkylated diamines via sequential alkylation and is the first report in the base-metal system to the best of our knowledge. Diverse control experiments including the deuterium incorporation studies suggest that the present protocol proceeds via a BH sequence.
Collapse
Affiliation(s)
- S N R Donthireddy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Misba Siddique
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
4
|
Podyacheva E, Afanasyev OI, Vasilyev DV, Chusov D. Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH, Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Egerlandstr. 3, 91058 Erlangen, Germany
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
5
|
Chen TR, Chen YT, Chen YS, Lee WJ, Lin YH, Wang HC. Iridium/graphene nanostructured catalyst for the N-alkylation of amines to synthesize nitrogen-containing derivatives and heterocyclic compounds in a green process. RSC Adv 2022; 12:4760-4770. [PMID: 35425512 PMCID: PMC8981502 DOI: 10.1039/d1ra09052f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022] Open
Abstract
A facile iridium/graphene-catalyzed methodology providing an efficient synthetic route for C-N bond formation is reported. This catalyst can directly promote the formation of C-N bonds, without pre-activation steps, and without solvents, alkalis and other additives. This protocol provides a direct N-alkylation of amines using a variety of primary and secondary alcohols with good selectivity and excellent yields. Charmingly, the use of diols resulted in intermolecular cyclization of amines, and such products are privileged structures in biologically active compounds. Two examples illustrate the advantages of this catalyst in organic synthesis: the tandem catalysis to synthesize hydroxyzine, and the intermolecular cyclization to synthesize cyclizine. Water is the only by-product, which makes this catalytic process sustainable and environmentally friendly.
Collapse
Affiliation(s)
- Tsun-Ren Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Yu-Tung Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Yi-Sheng Chen
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Wen-Jen Lee
- Department of Applied Physics, National Ping Tung University Pingtung City Taiwan
| | - Yen-Hsing Lin
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| | - Hao-Chen Wang
- Department of Applied Chemistry, National Ping Tung University Pingtung City Taiwan
| |
Collapse
|