1
|
Li Q, Zhang J, Yu T, Chen J, Wang G, Shi Z, Zhuo R, Wang R. Advanced metal oxide catalysts for propane dehydrogenation: from design strategy to dehydrogenation performance. NANOSCALE 2025; 17:5629-5653. [PMID: 39931811 DOI: 10.1039/d4nr04482g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Propane dehydrogenation (PDH) technology has been considered an important breakthrough to cope with the ever-increasing demand for propylene. Developing high-performance non-noble metal catalysts has emerged as an effective approach for replacing the currently used commercial Pt- and Cr-based catalysts with high cost and toxicity. Metal oxides have attracted much attention as PDH catalysts due to their high C-H activity, abundant active sites, and desirable dehydrogenation pathways. Regulating the supports and active sites through the rational design of structure and composition provides a new promising platform to improve the dehydrogenation activity and stability of metal oxide catalysts. This review systematically summarizes the catalytic mechanism of PDH. The rational design of metal oxide catalysts with suitable supports and precisely modulated active sites is described with their catalytic performances. In addition, the important roles played by reaction conditions to promote PDH processes are discussed. Furthermore, combined with well-developed advanced characterization methods, the in-depth exploration of the metal oxide-based PDH catalysts is highlighted. Finally, some perspectives for metal oxide-based PDH catalysts are concisely proposed to achieve their future innovations and industrialization.
Collapse
Affiliation(s)
- Qian Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Tong Yu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zongbo Shi
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Runsheng Zhuo
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- REZEL Catalysts Corporation, Shanghai 200120, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Non-oxidative Propane Dehydrogenation over Vanadium Doped Graphitic Carbon Nitride Catalysts. Catal Letters 2022. [DOI: 10.1007/s10562-022-04018-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
3
|
Zhi S, Lian Z, Si C, Jan F, Yang M, Li B. A critical evaluation of the catalytic role of CO 2 in propane dehydrogenation catalyzed by chromium oxide from a DFT-based microkinetic simulation. Phys Chem Chem Phys 2022; 24:11030-11038. [PMID: 35470840 DOI: 10.1039/d2cp00027j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propane dehydrogenation under CO2 is an important catalytic route to obtain propene with a good balance between selectivity and stability. However, a precise description of the catalytic role of CO2 in propane dehydrogenation is still absent. In this work, we focus on the elucidation of the role of CO2 by using DFT-based microkinetic simulation. The influence of CO2 is categorized as direct and indirect effects. It was found that the chemisorbed CO2 can directly abstract hydrogen from propane and propyl with a comparable barrier to the counterpart at the surface oxygen site. On the other hand, the dissociation of CO2 yields active surface species of CO* and O* which are actively involved in the removal of surface hydroxyls. It is found that the TOFs of both propane conversion and propene formation are significantly increased with the presence of CO2, which is explained by the reduced apparent activation energy. The primary hydrogen abstraction is identified to be the most influential step from the DRC analysis. The main effects of CO2 are concluded to be removing hydrogen and restoring oxygen vacancies from reaction pathway analysis.
Collapse
Affiliation(s)
- ShuaiKe Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - ChaoWei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| |
Collapse
|
4
|
Ethane conversion in the presence of CO2 over Co-based ZSM-5 zeolite: Co species controlling the reaction pathway. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|