1
|
Sohail M, Rauf S, Irfan M, Hayat A, Alghamdi MM, El-Zahhar AA, Ghernaout D, Al-Hadeethi Y, Lv W. Recent developments, advances and strategies in heterogeneous photocatalysts for water splitting. NANOSCALE ADVANCES 2024; 6:1286-1330. [PMID: 38419861 PMCID: PMC10898449 DOI: 10.1039/d3na00442b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/28/2023] [Indexed: 03/02/2024]
Abstract
Photocatalytic water splitting (PWS) is an up-and-coming technology for generating sustainable fuel using light energy. Significant progress has been made in the developing of PWS innovations over recent years. In addition to various water-splitting (WS) systems, the focus has primarily been on one- and two-steps-excitation WS systems. These systems utilize singular or composite photocatalysts for WS, which is a simple, feasible, and cost-effective method for efficiently converting prevalent green energy into sustainable H2 energy on a large commercial scale. The proposed principle of charge confinement and transformation should be implemented dynamically by conjugating and stimulating the photocatalytic process while ensuring no unintentional connection at the interface. This study focuses on overall water splitting (OWS) using one/two-steps excitation and various techniques. It also discusses the current advancements in the development of new light-absorbing materials and provides perspectives and approaches for isolating photoinduced charges. This article explores multiple aspects of advancement, encompassing both chemical and physical changes, environmental factors, different photocatalyst types, and distinct parameters affecting PWS. Significant factors for achieving an efficient photocatalytic process under detrimental conditions, (e.g., strong light absorption, and synthesis of structures with a nanometer scale. Future research will focus on developing novel materials, investigating potential synthesis techniques, and improving existing high-energy raw materials. The endeavors aim is to enhance the efficiency of energy conversion, the absorption of radiation, and the coherence of physiochemical processes.
Collapse
Affiliation(s)
- Muhammad Sohail
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| | - Sana Rauf
- College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 PR China
| | - Muhammad Irfan
- Department of Chemistry, Hazara University Mansehra 21300 Pakistan
| | - Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University 321004 Jinhua Zhejiang P. R. China
| | - Majed M Alghamdi
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Adel A El-Zahhar
- Department of Chemistry, College of Science, King Khalid University P. O. Box 9004 Abha 61413 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yas Al-Hadeethi
- Physics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
- Lithography in Devices Fabrication and Development Research Group, Deanship of Scientific Research, King Abdulaziz University Jeddah 21589 Saudi Arabia
- King Fahd Medical Research Center (KFMRC), King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Weiqiang Lv
- Huzhou Key Laboratory of Smart and Clean Energy, Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China Huzhou 313001 P. R. China
| |
Collapse
|
2
|
Wang N, Li Y, Wang L, Yu X. Photocatalytic Applications of ReS2-Based Heterostructures. Molecules 2023; 28:molecules28062627. [PMID: 36985599 PMCID: PMC10051642 DOI: 10.3390/molecules28062627] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
ReS2-based heterostructures, which involve the coupling of a narrow band-gap semiconductor ReS2 with other wide band-gap semiconductors, have shown promising performance in energy conversion and environmental pollution protection in recent years. This review focuses on the preparation methods, encompassing hydrothermal, chemical vapor deposition, and exfoliation techniques, as well as achievements in correlated applications of ReS2-based heterostructures, including type-I, type-II heterostructures, and Z-scheme heterostructures for hydrogen evolution, reduction of CO2, and degradation of pollutants. We believe that this review provides an overview of the most recent advances to guide further research and development of ReS2-based heterostructures for photocatalysis.
Collapse
|
3
|
Hojjati-Najafabadi A, Aygun A, Tiri RNE, Gulbagca F, Lounissaa MI, Feng P, Karimi F, Sen F. Bacillus thuringiensis Based Ruthenium/Nickel Co-Doped Zinc as a Green Nanocatalyst: Enhanced Photocatalytic Activity, Mechanism, and Efficient H 2 Production from Sodium Borohydride Methanolysis. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Akbar Hojjati-Najafabadi
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, PR China
| | - Aysenur Aygun
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Fulya Gulbagca
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Mohamed Islam Lounissaa
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| | - Peizhong Feng
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou221116, PR China
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan9477177870, Iran
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, Dumlupinar University, 43000Kutahya, Turkiye
| |
Collapse
|
4
|
Buledi JA, Solangi AR, Mallah A, Hassan SS, Ameen S, Karaman C, Karimi-Maleh H. A Reusable Nickel Oxide Reduced Graphene Oxide Modified Platinum Electrode for the Detection of Linezolid Drug. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jamil A. Buledi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Pakistan
| | - Syeda Sara Hassan
- U. S. Pakistan Centre for Advanced Studies in Water, Mehran University of Engineering and Technology, Jamshoro76080, Pakistan
| | - Sidra Ameen
- Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh67450, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu611731, People’s Republic of China
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, India602105
| |
Collapse
|
5
|
Khatoon A, Khand NH, Mallah A, Solangi AR, Memon SQ, Memon AF, Karaman C, Karimi F, Karaman O. A Fast and Reliable Electrophoretic Method for Size-Based Characterization of Silver Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Amna Khatoon
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Nadir H. Khand
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491Trondheim, Norway
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Amber R. Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, 76080Jamshoro, Pakistan
| | - Saima Q. Memon
- M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro76080, Sindh, Pakistan
| | - Almas F. Memon
- Department of Chemistry, Government College University, Hyderabad, Sindh71000, Pakistan
| | - Ceren Karaman
- Department of Electricity and Energy, Akdeniz University, Antalya07070, Turkey
- School of Engineering, Lebanese American University, Byblos1102 2801, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan9477177870, Iran
| | - Onur Karaman
- Department of Medical Imaging Techniques, Akdeniz University, Antalya07070, Turkey
| |
Collapse
|