1
|
Zhang SY, Ding XL, Qu SZ. Effect of External Electric Field on Nitrogen Activation on a Trimetal Cluster. Chemphyschem 2024; 25:e202300961. [PMID: 38850107 DOI: 10.1002/cphc.202300961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/15/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Efficient nitrogen (N2) fixation and activation under mild conditions are crucial for modern society. External electric fields (Felectric) can significantly affect N2 activation. In this work, the effect of Felectric on N2 activation by Nb3 clusters supported in a sumanene bowl was studied by density functional theory calculations. Four typical systems at different stages of N-N activation were studied, including two intermediates and two transition states. The impact of Felectric on various properties related to N2 activation was investigated, including the N-N bond length, overlap population density of states (OPDOS), total energy of the system, adsorption energy of N2, decomposition of energy changes, and electron transfer. The sumanene not only functions as a support and protective substrate, but also serves as a donor or acceptor under different Felectric conditions. Negative Felectric is beneficial to N-N bond activation because it promotes electron transfer to the N-N region and improves the d-π* orbital hybridization between metals and N2 in the activation process. Positive Felectric improves d-π* orbital hybridization only when the N-N is nearly dissociated. The microscopic mechanism of Felectric's effects provides insight into N2 activation and theoretical guidance for the design of catalytic reaction conditions for nitrogen reduction reactions (NRR).
Collapse
Affiliation(s)
- Song-Yang Zhang
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Institute of Clusters and Low Dimensional Nanomaterials, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, China
| | - Sheng-Ze Qu
- School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| |
Collapse
|
2
|
Ye YL, Zhang ZC, Ni BL, Yu D, Chen JH, Sun WM. Theoretical prediction of superatom WSi 12-based catalysts for CO oxidation by N 2O. Phys Chem Chem Phys 2023; 25:32525-32533. [PMID: 37997746 DOI: 10.1039/d3cp05363f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Catalytic conversion of N2O and CO into nonharmful gases is of great significance to reduce their adverse impact on the environment. The potential of the WSi12 superatom to serve as a new cluster catalyst for CO oxidation by N2O is examined for the first time. It is found that WSi12 prefers to adsorb the N2O molecule rather than the CO molecule, and the charge transfer from WSi12 to N2O results in the full activation of N2O into a physically absorbed N2 molecule and an activated oxygen atom that is attached to an edge of the hexagonal prism structure of WSi12. After the release of N2, the remaining oxygen atom can oxidize one CO molecule via overcoming a rate-limiting barrier of 28.19 kcal mol-1. By replacing the central W atom with Cr and Mo, the resulting MSi12 (M = Cr and Mo) superatoms exhibit catalytic performance for CO oxidation comparable to the parent WSi12. In particular, the catalytic ability of WSi12 for CO oxidation is well maintained when it is extended into tube-like WnSi6(n+1) (n = 2, 4, and 6) clusters with energy barriers of 25.63-29.50 kcal mol-1. Moreover, all these studied MSi12 (M = Cr, Mo, and W) and WnSi6(n+1) (n = 2, 4, and 6) species have high structural stability and can absorb sunlight to drive the catalytic process. This study not only opens a new door for the atomically precise design of new silicon-based nanoscale catalysts for various chemical reactions but also provides useful atomic-scale insights into the size effect of such catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Ya-Ling Ye
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- Department of Pharmacy, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian, 353006, People's Republic of China
| | - Zhi-Chao Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Bi-Lian Ni
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Dan Yu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jing-Hua Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Wei-Ming Sun
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, 350108, People's Republic of China.
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| |
Collapse
|
3
|
Liu Z, Wang H, Gao Y, Zhao J. Mechanisms in the Catalytic Reduction of N 2O by CO over the M 13@Cu 42 Clusters of Aromatic-like Inorganic and Metal Compounds. Molecules 2023; 28:molecules28114485. [PMID: 37298961 DOI: 10.3390/molecules28114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Metal aromatic substances play a unique and important role in both experimental and theoretical aspects, and they have made tremendous progress in the past few decades. The new aromaticity system has posed a significant challenge and expansion to the concept of aromaticity. From this perspective, based on spin-polarized density functional theory (DFT) calculations, we systematically investigated the doping effects on the reduction reactions of N2O catalyzed by CO for M13@Cu42 (M = Cu, Co, Ni, Zn, Ru, Rh, Pd, Pt) core-shell clusters from aromatic-like inorganic and metal compounds. It was found that compared with the pure Cu55 cluster, the strong M-Cu bonds provide more structural stability for M13@Cu42 clusters. Electrons that transferred from the M13@Cu42 to N2O promoted the activation and dissociation of the N-O bond. Two possible reaction modes of co-adsorption (L-H) and stepwise adsorption (E-R) mechanisms over M13@Cu42 clusters were thoroughly discovered. The results showed that the exothermic phenomenon was accompanied with the decomposition process of N2O via L-H mechanisms for all of the considered M13@Cu42 clusters and via E-R mechanisms for most of the M13@Cu42 clusters. Furthermore, the rate-limiting step of the whole reactions for the M13@Cu42 clusters were examined as the CO oxidation process. Our numerical calculations suggested that the Ni13@Cu42 cluster and Co13@Cu42 clusters exhibited superior potential in the reduction reactions of N2O by CO; especially, Ni13@Cu42 clusters are highly active, with very low free energy barriers of 9.68 kcal/mol under the L-H mechanism. This work demonstrates that the transition metal core encapsulated M13@Cu42 clusters can present superior catalytic activities towards N2O reduction by CO.
Collapse
Affiliation(s)
- Ziyang Liu
- College of Sciences, Xinjiang Production and Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, Shihezi University, Shihezi 832000, China
| | - Haifeng Wang
- College of Sciences, Xinjiang Production and Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, Shihezi University, Shihezi 832000, China
| | - Yan Gao
- College of Sciences, Xinjiang Production and Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, Shihezi University, Shihezi 832000, China
| | - Jijun Zhao
- College of Sciences, Xinjiang Production and Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, Shihezi University, Shihezi 832000, China
- Key Laboratory of Materials Modification by Laser, Ministry of Education, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Saiz F, Bernasconi L. Catalytic properties of the ferryl ion in the solid state: a computational review. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00200k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarises the last findings in the emerging field of heterogeneous catalytic oxidation of light alkanes by ferryl species supported on solid-state systems such as the conversion of methane into methanol by FeO-MOF74.
Collapse
Affiliation(s)
- Fernan Saiz
- ALBA Synchrotron, Carrer de la Llum 2-26, Cerdanyola del Valles 08290, Spain
| | - Leonardo Bernasconi
- Center for Research Computing and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|