1
|
Zhang J, Li Y, Zhang Z, Wang Z, Zhang J, Liu S, Qin Y, Zhu B, Zhang T, Wang H, Wang F, Zhang X. Highly efficient hydrogenation of furfural to furfuryl alcohol over Cu-Al 2O 3-ZnO catalyst. RSC Adv 2025; 15:4443-4457. [PMID: 39931417 PMCID: PMC11808355 DOI: 10.1039/d4ra08609k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/02/2025] [Indexed: 02/13/2025] Open
Abstract
The development of simple, efficient and economical catalysts for the hydrogenation of biomass to produce high value-added chemicals is of great significance in solving the energy crisis. In this work, a series of non-precious metal catalysts (Cu-Al2O3-ZnO) with different defect sites were prepared by etching Devarda's alloy. Under optimized mild reaction conditions, the furfural conversion and furfuryl alcohol selectivity are both greater than 99.0%, and the catalyst has good reusability. Characterisation and experiments were used to investigate the activate species for hydrogenation reaction. It can be proved that the low-valent Cu species in the Cu-Al2O3-ZnO catalysts play an important role as adsorption and dissociation sites for H2. Different etching degrees and sample reduction temperatures of the alloy can be used to adjust the content of acidic sites such as Al2O3 and CuO, which have appropriate adsorption properties for furfural. ZnO promotes the dispersion of the Cu species and enhances the accessibility of the active sites. The etching method achieves the interaction between species to further enhance the stability and activity of the catalyst. The catalytic performance of the catalyst is very competitive and this study provides a new method for the efficient hydrogenation of furfural to furfuryl alcohol.
Collapse
Affiliation(s)
- Junqi Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Yongwang Li
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Zhiwei Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Zheng Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Jiaxing Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Shuai Liu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Yang Qin
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Bingxin Zhu
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Tongxue Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Hongyu Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Fumin Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| | - Xubin Zhang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300350 China
| |
Collapse
|
2
|
Mixed Oxides Derived from Hydrotalcites Mg/Al Active in the Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol. Catalysts 2022. [DOI: 10.3390/catal13010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Herein, a family of Mg/Al hydrotalcites was synthesized as catalytic precursors of MgAlOx mixed oxides. Both hydrotalcites and mixed oxides were characterized and the mixed oxides were tested in the reduction of furfural to yield furfuryl alcohol by MPV reaction using isopropanol as hydrogen donor. Different catalytic parameters were tested, such as the type of alcohol, calcination temperature of the hydrotalcite, and reaction temperature. Furfural and isopropanol were adsorbed on the MgAl-3 catalyst to follow the species adsorbed on the catalyst by FTIR analysis. The results showed that the isopropanol was activated as isopropoxide and furfural changed the adsorption site with increasing temperature but maintaining the h1-conformation. The catalytic performances were associated with the basicity of the catalysts and the deactivation processes have been attributed to the existence of adsorbed species on the surface, mainly due to furfural-derived compounds. The catalysts were reused in three consecutive cycles showing a sharp drop of catalytic activity. To recover the activity, the catalysts were calcined at 500 °C but the activity was only partially recovered. The XPS analysis after reactivation showed that the catalyst surface was modified due to the segregation of hydroxides of Mg and Al.
Collapse
|
3
|
Transfer Hydrogenation of Biomass-Like Phenolic Compounds and 2-PrOH over Ni-Based Catalysts Prepared Using Supercritical Antisolvent Coprecipitation. Catalysts 2022. [DOI: 10.3390/catal12121655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transfer hydrogenation (TH) is considered as one of the most promising ways to convert biomass into valuable products. This study aims to demonstrate the performance of high-loaded Ni-based catalysts in the TH of phenolic compounds such as guaiacol and dimethoxybenzenes. The experiments were carried out under supercritical conditions at 250 °C using 2-PrOH as the only hydrogen donor. Ni-SiO2 and NiCu-SiO2 were synthesized using the eco-friendly original method based on supercritical antisolvent coprecipitation. It has been found that guaiacol is rapidly converted into 2-methoxycyclohexanol and cyclohexanol, while the presence of Cu impedes the formation of the latter product. Transformations of dimethoxybenzene position isomers are slower and result in different products. Thus, 1,3-dimethoxybenzene loses oxygen atoms transform into methoxycyclohexane and cyclohexanol, whereas the saturation of the aromatic ring is more typical for other isomers. The Cu addition increases specific catalytic activity in the TH of 1,2-and 1,3-dimethoxybenzene compared to the Cu-free catalyst.
Collapse
|
4
|
Zhang M, Yang J. Selective Hydrogenation of Furfural: Pure Silica Supported Metal Catalysts. ChemistrySelect 2022. [DOI: 10.1002/slct.202200013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Min Zhang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 PR China
| | - Jing‐He Yang
- School of Chemical Engineering Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
5
|
Li T, Liu J, Li Z, Zhang P, Yao Y, Sun Z, Wang Y, Liu YY, Wang A. Continuous conversion of furfural to furfuryl alcohol by transfer hydrogenation catalyzed by copper deposited in a monolith reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A polymer monolith catalytic reactor, which is fabricated by anchoring –SO3H groups on the surface of the fibers and by depositing Cu species, exhibits outstanding performance and high stability in continuous transfer hydrogenation of furfural.
Collapse
Affiliation(s)
- Tiefu Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiaming Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zipeng Li
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Peng Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yunlong Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhichao Sun
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yao Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| | - Anjie Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Liaoning Key Laboratory of Petrochemical Technology and Equipment, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|