1
|
Jackson JT, Nutt SL, McCormack MP. The Haematopoietically-expressed homeobox transcription factor: roles in development, physiology and disease. Front Immunol 2023; 14:1197490. [PMID: 37398663 PMCID: PMC10313424 DOI: 10.3389/fimmu.2023.1197490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
The Haematopoietically expressed homeobox transcription factor (Hhex) is a transcriptional repressor that is of fundamental importance across species, as evident by its evolutionary conservation spanning fish, amphibians, birds, mice and humans. Indeed, Hhex maintains its vital functions throughout the lifespan of the organism, beginning in the oocyte, through fundamental stages of embryogenesis in the foregut endoderm. The endodermal development driven by Hhex gives rise to endocrine organs such as the pancreas in a process which is likely linked to its role as a risk factor in diabetes and pancreatic disorders. Hhex is also required for the normal development of the bile duct and liver, the latter also importantly being the initial site of haematopoiesis. These haematopoietic origins are governed by Hhex, leading to its crucial later roles in definitive haematopoietic stem cell (HSC) self-renewal, lymphopoiesis and haematological malignancy. Hhex is also necessary for the developing forebrain and thyroid gland, with this reliance on Hhex evident in its role in endocrine disorders later in life including a potential role in Alzheimer's disease. Thus, the roles of Hhex in embryological development throughout evolution appear to be linked to its later roles in a variety of disease processes.
Collapse
Affiliation(s)
- Jacob T. Jackson
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Stephen L. Nutt
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Matthew P. McCormack
- The Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- iCamuno Biotherapeutics, Melbourne, VIC, Australia
| |
Collapse
|
2
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
3
|
Kostopoulou E, Miliordos K, Spiliotis B. Genetics of primary congenital hypothyroidism-a review. Hormones (Athens) 2021; 20:225-236. [PMID: 33400193 DOI: 10.1007/s42000-020-00267-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Congenital primary hypothyroidism (CH) is a state of inadequate thyroid hormone production detected at birth, caused either by absent, underdeveloped or ectopic thyroid gland (dysgenesis), or by defected thyroid hormone biosynthesis (dyshormonogenesis). A genetic component has been identified in many cases of CH. This review summarizes the clinical and biochemical features of the genetic causes of primary CH. METHODS A literature review was conducted of gene defects causing congenital hypothyroidism. RESULTS Mutations in five genes have predominantly been implicated in thyroid dysgenesis (TSHR, FOXE1, NKX2-1, PAX8, and NKX2-5), the primary cause of CH (85%), and mutations in seven genes in thyroid dyshormonogenesis (SLC5A5, TPO, DUOX2, DUOXA2, SLC6A4, Tg, and DEHAL1). These genes encode for proteins that regulate genes expressed during the differentiation of the thyroid, such as TPO and Tg genes, or genes that regulate iodide organification, thyroglobulin synthesis, iodide transport, and iodotyrosine deiodination. Besides thyroid dysgenesis and dyshormonogenesis, additional causes of congenital hypothyroidism, such as iodothyronine transporter defects and resistance to thyroid hormones, have also been associated with genetic mutations. CONCLUSION The identification of the underlying genetic defects of CH is important for genetic counseling of families with an affected member, for identifying additional clinical characteristics or the risk for thyroid neoplasia and for diagnostic and management purposes.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics|, University of Patras School of Medicine, Patras, Greece.
| | - Konstantinos Miliordos
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics|, University of Patras School of Medicine, Patras, Greece
| | - Bessie Spiliotis
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics|, University of Patras School of Medicine, Patras, Greece
| |
Collapse
|
4
|
Mio C, Grani G, Durante C, Damante G. Molecular defects in thyroid dysgenesis. Clin Genet 2019; 97:222-231. [PMID: 31432505 DOI: 10.1111/cge.13627] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Congenital hypothyroidism (CH) is a neonatal endocrine disorder that might occur as itself or be associated to congenital extra-thyroidal defects. About 85% of affected subjects experience thyroid dysgenesis (TD), characterized by defect in thyroid gland development. In vivo experiments on null mice paved the way for the identification of genes involved thyroid morphogenesis and development, whose mutation has been strongly associated to TD. Most of them are thyroid-specific transcription factors expressed during early thyroid development. Despite the arduous effort in unraveling the genetics of TD in animal models, up to now these data have been discontinuously confirmed in humans and only 5% of TD have associated with known null mice-related mutations (mainly PAX8 and TSHR). Notwithstanding, the advance in genetic testing represented by the next-generation sequencing (NGS) approach is steadily increasing the list of genes whose highly penetrant mutation predisposes to TD. In this review we intend to outline the molecular bases of TD, summarizing the current knowledge on thyroid development in both mice and humans and delineating the genetic features of its monogenetic forms. We will also highlight current strategies to enhance the insight into the non-Mendelian mechanisms of abnormal thyroid development.
Collapse
Affiliation(s)
- Catia Mio
- Department of Medicine, University of Udine, Udine, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Damante
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Medical Genetics, Academic Hospital "Azienda Sanitaria Universitaria Integrata di Udine", Udine, Italy
| |
Collapse
|
5
|
Zhao Y, Zhong L, Yi H. A review on the mechanism of iodide metabolic dysfunction in differentiated thyroid cancer. Mol Cell Endocrinol 2019; 479:71-77. [PMID: 30287400 DOI: 10.1016/j.mce.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/27/2022]
Abstract
The incidence of differentiated thyroid cancer (DTC) has been increasing rapidly worldwide, and the risk factors remain unclear. With the growing number of patients with DTC, the related issues have been gradually highlighted. 131Iodide (131I) is an important treatment for DTC and has the potential to reduce the risk of recurrence. 131I is also an effective treatment for distant metastases of thyroid carcinoma. However, iodide metabolism dysfunction in metastatic foci causes patients to lose the opportunity of 131I treatment. This article reviews the related mechanisms of iodide metabolism dysfunction in DTC cells and summarizes the clinical transformation progression.
Collapse
Affiliation(s)
- Yinlong Zhao
- Department of Nuclear Medicine, Second Hospital of Jilin University, Changchun, Jilin Province, 130041, PR China.
| | - Lili Zhong
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130041, PR China.
| | - Heqing Yi
- Department of Nuclear Medicine, Zhejiang Cancer Hospital, Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang, 310021, PR China.
| |
Collapse
|
6
|
Liu S, Chai J, Zheng G, Li H, Lu D, Ge Y. Screening of HHEX Mutations in Chinese Children with Thyroid Dysgenesis. J Clin Res Pediatr Endocrinol 2016; 8:21-5. [PMID: 26757609 PMCID: PMC4805044 DOI: 10.4274/jcrpe.2456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE Congenital hypothyroidism (CH) is a frequent neonatal endocrine disease with an incidence of about 1:2500 worldwide. Although thyroid dysgenesis (TD) is the most frequent cause of CH cases, its pathogenesis remains unclear. The aim of this study was to screen the hematopoietically-expressedhomeobox gene (HHEX) mutations in Chinese children with TD. METHODS Genomic deoxyribonucleic acid was extracted from peripheral blood leukocytes in 234 TD patients from Shandong Province. Mutations in all exons and nearby introns of HHEX were analyzed by direct sequencing after polymerase chain reaction amplification. RESULTS Sequencing analysis of HHEX indicated that no causative mutations were present in the coding regionof the TD patients. However, a genetic variant (IVS2+ 127 G/T, 10.26%) was observed in the intron 2 in HHEX. CONCLUSION Our results indicate that the frequency of HHEX mutation is very low and may not be the main causative factor in Chinese TD patients. However, these results need to be replicated using larger datasets collected from different populations.
Collapse
Affiliation(s)
- Shiguo Liu
- The Affiliated Hospital of Qingdao University, Prenatal Diagnosis Center, Qingdao, China
,
The Affiliated Hospital of Qingdao University, Genetic Laboratory, Qingdao, China
,
These authors contributed equally to this work.
| | - Jian Chai
- Qingdao University Faculty of Medicine, Department of Biochemistry and Molecular Biology, Qingdao, China
,
These authors contributed equally to this work.
| | - Guohua Zheng
- Weifang Maternal and Children Health’s Hospital, Weifang, China
| | - Huichao Li
- The Affiliated Hospital of Qingdao University, Department of Thyroid Surgery, Qingdao, China
| | - Deguo Lu
- Linyi People's Hospital, Department of Clinical Laboratory, Shandong, China, E-mail:
| | - Yinlin Ge
- Qingdao University Faculty of Medicine, Department of Biochemistry and Molecular Biology, Qingdao, China
| |
Collapse
|
7
|
Gaston K, Tsitsilianos MA, Wadey K, Jayaraman PS. Misregulation of the proline rich homeodomain (PRH/HHEX) protein in cancer cells and its consequences for tumour growth and invasion. Cell Biosci 2016; 6:12. [PMID: 26877867 PMCID: PMC4752775 DOI: 10.1186/s13578-016-0077-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/01/2016] [Indexed: 02/07/2023] Open
Abstract
The proline rich homeodomain protein (PRH), also known as haematopoietically expressed homeobox (HHEX), is an essential transcription factor in embryonic development and in the adult. The PRH protein forms oligomeric complexes that bind to tandemly repeated PRH recognition sequences within or at a distance from PRH-target genes and recruit a variety of PRH-interacting proteins. PRH can also bind to other transcription factors and co-regulate specific target genes either directly through DNA binding, or indirectly through effects on the activity of its partner proteins. In addition, like some other homeodomain proteins, PRH can regulate the translation of specific mRNAs. Altered PRH expression and altered PRH intracellular localisation, are associated with breast cancer, liver cancer and thyroid cancer and some subtypes of leukaemia. This is consistent with the involvement of multiple PRH-interacting proteins, including the oncoprotein c-Myc, translation initiation factor 4E (eIF4E), and the promyelocytic leukaemia protein (PML), in the control of cell proliferation and cell survival. Similarly, multiple PRH target genes, including the genes encoding vascular endothelial growth factor (VEGF), VEGF receptors, Endoglin, and Goosecoid, are known to be important in the control of cell proliferation and cell survival and/or the regulation of cell migration and invasion. In this review, we summarise the evidence that implicates PRH in tumourigenesis and we review the data that suggests PRH levels could be useful in cancer prognosis and in the choice of treatment options.
Collapse
Affiliation(s)
- Kevin Gaston
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | | | - Kerry Wadey
- School of Biochemistry, University Walk, University of Bristol, Bristol, BS8 1TD UK
| | - Padma-Sheela Jayaraman
- Division of Immunity and Infection, School of Medicine, University of Birmingham, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
8
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
9
|
Nilsson M, Fagman H. Mechanisms of thyroid development and dysgenesis: an analysis based on developmental stages and concurrent embryonic anatomy. Curr Top Dev Biol 2013; 106:123-70. [PMID: 24290349 DOI: 10.1016/b978-0-12-416021-7.00004-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Thyroid dysgenesis is the most common cause of congenital hypothyroidism that affects 1 in 3000 newborns. Although a number of pathogenetic mutations in thyroid developmental genes have been identified, the molecular mechanism of disease is unknown in most cases. This chapter summarizes the current knowledge of normal thyroid development and puts the different developmental stages in perspective, from the time of foregut endoderm patterning to the final shaping of pharyngeal anatomy, for understanding how specific malformations may arise. At the cellular level, we will also discuss fate determination of follicular and C-cell progenitors and their subsequent embryonic growth, migration, and differentiation as the different thyroid primordia evolve and merge to establish the final size and shape of the gland.
Collapse
Affiliation(s)
- Mikael Nilsson
- Sahlgrenska Cancer Center, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden.
| | | |
Collapse
|
10
|
Kloth L, Belge G, Burchardt K, Loeschke S, Wosniok W, Fu X, Nimzyk R, Mohamed SA, Drieschner N, Rippe V, Bullerdiek J. Decrease in thyroid adenoma associated (THADA) expression is a marker of dedifferentiation of thyroid tissue. BMC Clin Pathol 2011; 11:13. [PMID: 22050638 PMCID: PMC3229435 DOI: 10.1186/1472-6890-11-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 11/04/2011] [Indexed: 12/17/2022] Open
Abstract
Background Thyroid adenoma associated (THADA) has been identified as the target gene affected by chromosome 2p21 translocations in thyroid adenomas, but the role of THADA in the thyroid is still elusive. The aim of this study was to quantify THADA gene expression in normal tissues and in thyroid hyper- and neoplasias, using real-time PCR. Methods For the analysis THADA and 18S rRNA gene expression assays were performed on 34 normal tissue samples, including thyroid, salivary gland, heart, endometrium, myometrium, lung, blood, and adipose tissue as well as on 85 thyroid hyper- and neoplasias, including three adenomas with a 2p21 translocation. In addition, NIS (sodium-iodide symporter) gene expression was measured on 34 of the pathological thyroid samples. Results Results illustrated that THADA expression in normal thyroid tissue was significantly higher (p < 0.0001, exact Wilcoxon test) than in the other tissues. Significant differences were also found between non-malignant pathological thyroid samples (goiters and adenomas) and malignant tumors (p < 0.001, Wilcoxon test, t approximation), anaplastic carcinomas (ATCs) and all other samples and also between ATCs and all other malignant tumors (p < 0.05, Wilcoxon test, t approximation). Furthermore, in thyroid tumors THADA mRNA expression was found to be inversely correlated with HMGA2 mRNA. HMGA2 expression was recently identified as a marker revealing malignant transformation of thyroid follicular tumors. A correlation between THADA and NIS has also been found in thyroid normal tissue and malignant tumors. Conclusions The results suggest THADA being a marker of dedifferentiation of thyroid tissue.
Collapse
Affiliation(s)
- Lars Kloth
- Center for Human Genetics, University of Bremen, Leobener Str, ZHG, 28359 Bremen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification of novel Pax8 targets in FRTL-5 thyroid cells by gene silencing and expression microarray analysis. PLoS One 2011; 6:e25162. [PMID: 21966443 PMCID: PMC3179481 DOI: 10.1371/journal.pone.0025162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 08/26/2011] [Indexed: 02/07/2023] Open
Abstract
Background The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown. Methodology/Principal Findings To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation. Conclusions/Significance This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies.
Collapse
|
12
|
Davies TF, Latif R, Minsky NC, Ma R. Clinical review: The emerging cell biology of thyroid stem cells. J Clin Endocrinol Metab 2011; 96:2692-702. [PMID: 21778219 PMCID: PMC3167664 DOI: 10.1210/jc.2011-1047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. EVIDENCE ACQUISITION This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990-2011) and discusses the remaining problems encountered in their differentiation. EVIDENCE SYNTHESIS Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. CONCLUSIONS Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy.
Collapse
Affiliation(s)
- Terry F Davies
- Thyroid Research Unit, Mount Sinai School of Medicine, and the James J Peters Veterans Affairs Medical Center, New York, New York 10468, USA.
| | | | | | | |
Collapse
|
13
|
De Felice M, Di Lauro R. Minireview: Intrinsic and extrinsic factors in thyroid gland development: an update. Endocrinology 2011; 152:2948-56. [PMID: 21693675 DOI: 10.1210/en.2011-0204] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vertebrates the portion of the thyroid gland synthesizing the thyroid hormones develops from a small group of endodermal cells in the foregut. The nature of the signals that lead to the biochemical and morphogenetic events responsible for the organization of these cells into the adult thyroid gland has only recently become evident. In this review we summarize recent developments in the understanding of these processes, derived from evidence collected in several organisms.
Collapse
|
14
|
Morimoto R, Yamamoto A, Akimoto Y, Obinata A. Homeoprotein Hex is expressed in mouse developing chondrocytes. J Biochem 2011; 150:61-71. [PMID: 21454303 DOI: 10.1093/jb/mvr039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Endochondral ossification is a complex process involving the formation of cartilage and the subsequent replacement by mineralized bone. Although the proliferation and differentiation of chondrocytes are strictly regulated, the molecular mechanisms involved are not completely understood. Here, we show that a divergent-type homeobox gene, hematopoietically expressed homeobox gene (HEX), is expressed in mouse chondrogenic cell line ATDC5. The expression of Hex protein drastically increased during differentiation. The chondrogenic differentiation-enhanced expression of Hex protein was also observed in chondrocytes in the tibia of embryonic day 15.5 (E15.5) mouse embryos. The localization of Hex protein in the chondrocytes of the tibia changed in association with maturation; namely, there was Hex protein in the cytoplasm near the endoplasmic reticulum (ER) in resting chondrocytes, which moved to the nucleus in prehypertrophic chondrocytes, and thereafter entered the ER in hypertrophic chondrocytes. These results suggest Hex expression and subcellular localization are associated with chondrocyte maturation.
Collapse
Affiliation(s)
- Riyo Morimoto
- Department of Physiological Chemistry II, Faculty of Pharmaceutical Science, Teikyo University, Kanagawa, Japan.
| | | | | | | |
Collapse
|
15
|
Abstract
Congenital hypothyroidism is mainly due to structural defects of the thyroid gland, collectively known as thyroid dysgenesis. The two most prevalent forms of this condition are abnormal localization of differentiated thyroid tissue (thyroid ectopia) and total absence of the gland (athyreosis). The clinical picture of thyroid dysgenesis suggests that impaired specification, proliferation and survival of thyroid precursor cells and loss of concerted movement of these cells in a distinct spatiotemporal pattern are major causes of malformation. In normal development the thyroid primordium is first distinguished as a thickening of the anterior foregut endoderm at the base of the prospective tongue. Subsequently, this group of progenitors detaches from the endoderm, moves caudally and ultimately differentiates into hormone-producing units, the thyroid follicles, at a distant location from the site of specification. In higher vertebrates later stages of thyroid morphogenesis are characterized by shape remodeling into a bilobed organ and the integration of a second type of progenitors derived from the caudal-most pharyngeal pouches that will differentiate into C-cells. The present knowledge of thyroid developmental dynamics has emerged from embryonic studies mainly in chicken, mouse and more recently also in zebrafish. This review will highlight the key morphogenetic steps of thyroid organogenesis and pinpoint which crucial regulatory mechanisms are yet to be uncovered. Considering the co-incidence of thyroid dysgenesis and congenital heart malformations the possible interactions between thyroid and cardiovascular development will also be discussed.
Collapse
|
16
|
Chad Brenner J, Chinnaiyan AM. Translocations in epithelial cancers. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1796:201-15. [PMID: 19406209 PMCID: PMC2752494 DOI: 10.1016/j.bbcan.2009.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/21/2009] [Indexed: 01/09/2023]
Abstract
Genomic translocations leading to the expression of chimeric transcripts characterize several hematologic, mesenchymal and epithelial malignancies. While several gene fusions have been linked to essential molecular events in hematologic malignancies, the identification and characterization of recurrent chimeric transcripts in epithelial cancers has been limited. However, the recent discovery of the recurrent gene fusions in prostate cancer has sparked a revitalization of the quest to identify novel rearrangements in epithelial malignancies. Here, the molecular mechanisms of gene fusions that drive several epithelial cancers and the recent technological advances that increase the speed and reliability of recurrent gene fusion discovery are explored.
Collapse
Affiliation(s)
- J. Chad Brenner
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Howard Hughes Medical Institute, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Department of Urology, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
- Comprehensive Cancer Center, University of Michigan 1400 E. Medical Center Drive, 5316 CCGC, Ann Arbor, MI 48109, USA
| |
Collapse
|
17
|
Ma R, Latif R, Davies TF. Thyrotropin-independent induction of thyroid endoderm from embryonic stem cells by activin A. Endocrinology 2009; 150:1970-5. [PMID: 19074581 PMCID: PMC2659285 DOI: 10.1210/en.2008-1374] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To model the differentiation of thyroid epithelial cells, we examined embryoid bodies derived from undifferentiated murine embryonic stem cells treated with activin A to induce endoderm differentiation, the germ layer from which thyroid cells occur. The resulting endodermal cells were then further exposed to TSH and/or IGF-I for up to 21 d. Oct-4 and REX1 expression, required to sustain stem cell self-renewal and pluripotency, were appropriately down-regulated, whereas GATA-4, and alpha-fetoprotein, both endodermal-specific markers, increased as the embryonic stem cells were exposed to activin A. By d 5 culture, TSH receptor (TSHR) and sodium iodide symporter (NIS) gene and protein expression were markedly induced. Cells isolated by the fluorescence-activated cell sorter simultaneously expressed not only TSHR and NIS proteins but also PAX8 mRNA, an expression pattern unique to thyroid cells and expected in committed thyroid progenitor cells. Such expression continued until d 21 with no influence seen by the addition of TSH or IGF-I. The sequence of gene expression changes observed in these experiments demonstrated the emergence of definitive thyroid endoderm. The activin A induction of thyroid-specific markers, NIS and TSHR, occurred in the absence of TSH stimulation, and, therefore, the emergence of thyroid endoderm in vitro paralleled the emergence of thyroid cells in TSHR-knockout mice. Activin A is clearly a major regulator of thyroid endoderm.
Collapse
Affiliation(s)
- Risheng Ma
- Thyroid Research Unit, Mount Sinai School of Medicine, James J. Peters Veterans Affairs Medical Center, New York,New York 10468, USA.
| | | | | |
Collapse
|
18
|
Carvalho DP, Ferreira ACF. The importance of sodium/iodide symporter (NIS) for thyroid cancer management. ACTA ACUST UNITED AC 2008; 51:672-82. [PMID: 17891230 DOI: 10.1590/s0004-27302007000500004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 02/17/2007] [Indexed: 01/02/2023]
Abstract
The thyroid gland has the ability to uptake and concentrate iodide, which is a fundamental step in thyroid hormone biosynthesis. Radioiodine has been used as a diagnostic and therapeutic tool for several years. However, the studies related to the mechanisms of iodide transport were only possible after the cloning of the gene that encodes the sodium/iodide symporter (NIS). The studies about the regulation of NIS expression and the possibility of gene therapy with the aim of transferring NIS gene to cells that normally do not express the symporter have also become possible. In the majority of hypofunctioning thyroid nodules, both benign and malignant, NIS gene expression is maintained, but NIS protein is retained in the intracellular compartment. The expression of NIS in non-thyroid tumoral cells in vivo has been possible through the transfer of NIS gene under the control of tissue-specific promoters. Apart from its therapeutic use, NIS has also been used for the localization of metastases by scintigraphy or PET-scan with 124I. In conclusion, NIS gene cloning led to an important development in the field of thyroid pathophysiology, and has also been fundamental to extend the use of radioiodine for the management of non-thyroid tumors.
Collapse
Affiliation(s)
- Denise P Carvalho
- Laboratório de Fisiologia Endócrina, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| | | |
Collapse
|
19
|
Soufi A, Jayaraman PS. PRH/Hex: an oligomeric transcription factor and multifunctional regulator of cell fate. Biochem J 2008; 412:399-413. [PMID: 18498250 PMCID: PMC2570084 DOI: 10.1042/bj20080035] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 12/31/2022]
Abstract
The PRH (proline-rich homeodomain) [also known as Hex (haematopoietically expressed homeobox)] protein is a critical regulator of vertebrate development. PRH is able to regulate cell proliferation and differentiation and is required for the formation of the vertebrate body axis, the haematopoietic and vascular systems and the formation of many vital organs. PRH is a DNA-binding protein that can repress and activate the transcription of its target genes using multiple mechanisms. In addition, PRH can regulate the nuclear transport of specific mRNAs making PRH a member of a select group of proteins that control gene expression at the transcriptional and translational levels. Recent biophysical analysis of the PRH protein has shown that it forms homo-oligomeric complexes in vivo and in vitro and that the proline-rich region of PRH forms a novel dimerization interface. Here we will review the current literature on PRH and discuss the complex web of interactions centred on this multifunctional protein.
Collapse
Key Words
- development
- gene regulation
- haematopoiesis
- haematopoietically expressed homeobox (hex)
- homeodomain
- oligomerization
- proline-rich homeodomain (prh)
- transcription
- ade, anterior definitive endoderm
- aml, acute myelogenous leukaemia
- ap-1, activator protein-1
- apl, acute promyelocytic leukaemia
- auc, analytical ultracentrifugation
- ave, anterior visceral endoderm
- bmp, bone morphogenetic protein
- bre, bmp-responsive element
- cml, chronic myelogenous leukaemia
- cre, camp-response-element
- creb, cre-binding protein
- e, embryonic day
- eif-4e, eukaryotic initiation factor 4e
- emsa, electrophoretic mobility-shift assay
- es, embryonic stem
- esm-1, endothelial cell-specific molecule-1
- fgf, fibroblast growth factor
- hex, haematopoietically expressed homeobox
- hnf, hepatocyte nuclear factor
- hox, homeobox
- hsc, haematopoietic stem cell
- huvec, human umbilical-vein endothelial cell
- nk, nuclear body-associated kinase
- nmhc-b, non-muscle myosin heavy chain b
- ntcp, sodium-dependent bile acid co-transporter
- pml, promyelocytic leukaemic
- prh, proline-rich homeodomain
- rarα, retinoic acid receptor α
- sm, smooth muscle
- srf, serum-response factor
- tbp, tata-box-binding protein
- tg, thyroglobulin
- tie, tk with immunoglobulin-like and egf (endothelial growth factor)-like domains
- tk, thymidine kinase
- tle, transducin-like enhancer
- tn, tinman
- tsh, thyroid-stimulating hormone
- ttf, thyroid transcription factor
- ve, visceral endoderm
- vegf, vascular endothelial growth factor
- vegfr, vegf receptor
- vsmc, vascular smooth muscle cell
Collapse
Affiliation(s)
- Abdenour Soufi
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| | - Padma-Sheela Jayaraman
- Institute of Biomedical Research, Division of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, U.K
| |
Collapse
|
20
|
Puppin C, D'Aurizio F, D'Elia AV, Cesaratto L, Tell G, Russo D, Filetti S, Ferretti E, Tosi E, Mattei T, Pianta A, Pellizzari L, Damante G. Effects of histone acetylation on sodium iodide symporter promoter and expression of thyroid-specific transcription factors. Endocrinology 2005; 146:3967-74. [PMID: 15919754 DOI: 10.1210/en.2005-0128] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibitors of histone deacetylases (HDACs) activate the sodium iodide symporter (NIS) expression in thyroid tumor cells. In this study, mechanisms accounting for these effects were investigated. Various human thyroid tumor cell lines (ARO, BCPAP, FRO, TPC-1) were treated with the HDAC inhibitors Na butyrate (NaB) and tricostatin A (TSA), and the effects on the expression of NIS and several thyroid-specific transcription factors together with the activity of NIS promoter were evaluated. TSA and NaB increased NIS mRNA levels in all cell lines. Among thyroid-specific transcription factors, only expression of PAX8 in ARO cells was increased. Down-regulation of thyroid-specific transcription factor-1 expression was observed in BCPAP and TPC-1 cell lines. Thyroid-specific transcription factor-2 mRNA was reduced in FRO, BCPAP, and TPC-1 cells. Histone acetylation had no significant effects on HEX expression. Altogether, these data indicate that the increase of NIS expression is not mediated by modification of expression of thyroid-specific transcription factors. Accordingly, in transfection experiments performed in the HeLa cell line (which does not express thyroid-specific transcription factors), treatment with TSA and NaB increased NIS promoter activity. Stimulation of NIS promoter activity was also obtained by overexpressing histone acetylating proteins pCAF and p300 in HeLa cells. Conversely, overexpression of the HDAC 1 enzyme inhibited basal activity of the NIS promoter. Effects of TSA and NaB on NIS expression were also evaluated in nonthyroid cell lines MCF-7, Hep-G2, and SAOS-2. In all cell lines TSA and NaB greatly increased NIS mRNA levels. We concluded that control of NIS expression by inhibition of HDAC appears not to be mediated by cell-specific mechanisms, suggesting it as a potential strategy to induce radioiodine sensitivity in different human tumors.
Collapse
Affiliation(s)
- Cinzia Puppin
- Dipartimento di Scienze e Tecnologie Biomediche, Policlinico Universitario di Udine, Piazzale Kolbe 1, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Presta I, Arturi F, Ferretti E, Mattei T, Scarpelli D, Tosi E, Scipioni A, Celano M, Gulino A, Filetti S, Russo D. Recovery of NIS expression in thyroid cancer cells by overexpression of Pax8 gene. BMC Cancer 2005; 5:80. [PMID: 16029487 PMCID: PMC1180821 DOI: 10.1186/1471-2407-5-80] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/19/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recovery of iodide uptake in thyroid cancer cells by means of obtaining the functional expression of the sodium/iodide symporter (NIS) represents an innovative strategy for the treatment of poorly differentiated thyroid cancer. However, the NIS gene expression alone is not always sufficient to restore radioiodine concentration ability in these tumour cells. METHODS In this study, the anaplastic thyroid carcinoma ARO cells were stably transfected with a Pax8 gene expression vector. A quantitative RT-PCR was performed to assess the thyroid specific gene expression in selected clones. The presence of NIS protein was detected by Western blot and localized by immunofluorescence. A iodide uptake assay was also performed to verify the functional effect of NIS induction and differentiation switch. RESULTS The clones overexpressing Pax8 showed the re-activation of several thyroid specific genes including NIS, Pendrin, Thyroglobulin, TPO and TTF1. In ARO-Pax8 clones NIS protein was also localized both in cell cytoplasm and membrane. Thus, the ability to uptake the radioiodine was partially restored, associated to a high rate of efflux. In addition, ARO cells expressing Pax8 presented a lower rate of cell growth. CONCLUSION These finding demonstrate that induction of Pax8 expression may determine a re-differentiation of thyroid cancer cells, including a partial recovery of iodide uptake, fundamental requisite for a radioiodine-based therapeutic approach for thyroid tumours.
Collapse
Affiliation(s)
- Ivan Presta
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Franco Arturi
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Elisabetta Ferretti
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Tiziana Mattei
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Daniela Scarpelli
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Emanuele Tosi
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Angela Scipioni
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Marilena Celano
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Alberto Gulino
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
- Neuromed Institute, 86077 Pozzilli, Italy
| | - Sebastiano Filetti
- Dipartimento di Scienze Cliniche and Dipartimento di Medicina Sperimentale e Patologia, University of Rome "La Sapienza", Rome, Italy
| | - Diego Russo
- Dipartimento di Medicina Sperimentale e Clinica "G. Salvatore" and Dipartimento di Scienze Farmacobiologiche, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| |
Collapse
|