1
|
Guo HX, Zheng Y, Zhao GK, Wang HQ, Yu S, Gao F, Zhang JB, Zhang YH, Yuan B. Circ-ERC2 Is Involved in Melatonin Synthesis by Regulating the miR-125a-5p/MAT2A Axis. Int J Mol Sci 2022; 23:ijms232415477. [PMID: 36555116 PMCID: PMC9778726 DOI: 10.3390/ijms232415477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
The circadian rhythm of melatonin secretion in the pineal gland is highly conserved in vertebrates. Melatonin levels are always elevated at night. Acetylserotonin O-methyltransferase (ASMT) is the last enzyme in the regulation of melatonin biosynthesis (N-acetyl-5-hydroxytryptamine-melatonin). S-adenosylmethionine (SAM) is an important methyl donor in mammals and can be used as a substrate for the synthesis of melatonin. Methionine adenosyltransferase (MAT) catalyzes the synthesis of SAM from methionine and ATP and has a circadian rhythm. CircRNA is an emerging type of endogenous noncoding RNA with a closed loop. Whether circRNAs in the pineal gland can participate in the regulation of melatonin synthesis by binding miRNAs to target mat2a as part of the circadian rhythm is still unclear. In this study, we predicted the targeting relationship of differentially expressed circRNAs, miRNAs and mRNAs based on the results of rat pineal RNA sequencing. Mat2a siRNA transfection confirmed that mat2a is involved in the synthesis of melatonin. Circ-ERC2 and miR-125a-5p were screened out by software prediction, dual-luciferase reporter experiments, cell transfection, etc. Finally, we constructed a rat superior cervical ganglionectomy model (SCGx), and the results showed that circ-ERC2 could participate in the synthesis of melatonin through the miR-125a-5p/MAT2A axis. The results of the study revealed that circ-ERC2 can act as a molecular sponge of miR-125a-5p to regulate the synthesis of melatonin in the pineal gland by targeting mat2a. This experiment provides a basis for research on the circadian rhythm of noncoding RNA on pineal melatonin secretion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bao Yuan
- Correspondence: (Y.-H.Z.); (B.Y.)
| |
Collapse
|
2
|
Castro AE, Benitez SG, Farias Altamirano LE, Savastano LE, Patterson SI, Muñoz EM. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland. J Pineal Res 2015; 58:439-51. [PMID: 25752781 DOI: 10.1111/jpi.12228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022]
Abstract
Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.
Collapse
Affiliation(s)
- Analía E Castro
- Laboratory of Neurobiology: Chronobiology Section, Institute of Histology and Embryology of Mendoza (IHEM-CONICET), School of Medicine, National University of Cuyo, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
3
|
Tong X, Yin L. Circadian rhythms in liver physiology and liver diseases. Compr Physiol 2013; 3:917-40. [PMID: 23720334 DOI: 10.1002/cphy.c120017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In mammals, circadian rhythms function to coordinate a diverse panel of physiological processes with environmental conditions such as food and light. As the driving force for circadian rhythmicity, the molecular clock is a self-sustained transcription-translational feedback loop system consisting of transcription factors, epigenetic modulators, kinases/phosphatases, and ubiquitin E3 ligases. The molecular clock exists not only in the suprachiasmatic nuclei of the hypothalamus but also in the peripheral tissues to regulate cellular and physiological function in a tissue-specific manner. The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Clock gene mutant animals display impaired glucose and lipid metabolism and are susceptible to diet-induced obesity and metabolic dysfunction, providing strong evidence for the connection between the circadian clock and metabolic homeostasis. Circadian-controlled hepatic metabolism is partially achieved by controlling the expression and/or activity of key metabolic enzymes, transcription factors, signaling molecules, and transporters. Reciprocally, intracellular metabolites modulate the molecular clock activity in response to the energy status. Although still at the early stage, circadian clock dysfunction has been implicated in common chronic liver diseases. Circadian dysregulation of lipid metabolism, detoxification, reactive oxygen species (ROS) production, and cell-cycle control might contribute to the onset and progression of liver steatosis, fibrosis, and even carcinogenesis. In summary, these findings call for a comprehensive study of the function and mechanisms of hepatic circadian clock to gain better understanding of liver physiology and diseases.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | |
Collapse
|
4
|
da Silveira Cruz-Machado S, Pinato L, Tamura EK, Carvalho-Sousa CE, Markus RP. Glia-pinealocyte network: the paracrine modulation of melatonin synthesis by tumor necrosis factor (TNF). PLoS One 2012; 7:e40142. [PMID: 22768337 PMCID: PMC3388049 DOI: 10.1371/journal.pone.0040142] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 06/01/2012] [Indexed: 02/06/2023] Open
Abstract
The pineal gland, a circumventricular organ, plays an integrative role in defense responses. The injury-induced suppression of the pineal gland hormone, melatonin, which is triggered by darkness, allows the mounting of innate immune responses. We have previously shown that cultured pineal glands, which express toll-like receptor 4 (TLR4) and tumor necrosis factor receptor 1 (TNFR1), produce TNF when challenged with lipopolysaccharide (LPS). Here our aim was to evaluate which cells present in the pineal gland, astrocytes, microglia or pinealocytes produced TNF, in order to understand the interaction between pineal activity, melatonin production and immune function. Cultured pineal glands or pinealocytes were stimulated with LPS. TNF content was measured using an enzyme-linked immunosorbent assay. TLR4 and TNFR1 expression were analyzed by confocal microscopy. Microglial morphology was analyzed by immunohistochemistry. In the present study, we show that although the main cell types of the pineal gland (pinealocytes, astrocytes and microglia) express TLR4, the production of TNF induced by LPS is mediated by microglia. This effect is due to activation of the nuclear factor kappa B (NF-kB) pathway. In addition, we observed that LPS activates microglia and modulates the expression of TNFR1 in pinealocytes. As TNF has been shown to amplify and prolong inflammatory responses, its production by pineal microglia suggests a glia-pinealocyte network that regulates melatonin output. The current study demonstrates the molecular and cellular basis for understanding how melatonin synthesis is regulated during an innate immune response, thus our results reinforce the role of the pineal gland as sensor of immune status.
Collapse
Affiliation(s)
| | - Luciana Pinato
- Department of Speech-Language and Hearing Therapy, Universidade Estadual Paulista (UNESP), Marília, São Paulo, Brazil
| | - Eduardo Koji Tamura
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Regina P. Markus
- Laboratory of Chronopharmacology, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
5
|
Spiwoks-Becker I, Wolloscheck T, Rickes O, Kelleher DK, Rohleder N, Weyer V, Spessert R. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction. Neuroendocrinology 2011; 94:113-23. [PMID: 21474921 DOI: 10.1159/000327138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 03/05/2011] [Indexed: 12/16/2022]
Abstract
The cyclic nucleotide phosphodiesterase 10A (PDE10A) is highly expressed in striatal spiny projection neurons and represents a therapeutic target for the treatment of psychotic symptoms. As reported previously [J Biol Chem 2009; 284:7606-7622], in this study PDE10A was seen to be additionally expressed in the pineal gland where the levels of PDE10A transcript display daily changes. As with the transcript, the amount of PDE10A protein was found to be under daily and seasonal regulation. The observed cyclicity in the amount of PDE10A mRNA persists under constant darkness, is blocked by constant light and is modulated by the lighting regime. It therefore appears to be driven by the master clock in the suprachiasmatic nucleus (SCN). Since adrenergic agonists and dibutyryl-cAMP induce PDE10A mRNA, the in vitro clock-dependent control of Pde10a appears to be mediated via a norepinephrine → β-adrenoceptor → cAMP/protein kinase A signaling pathway. With regard to the physiological role of PDE10A in the pineal gland, the specific PDE10A inhibitor papaverine was seen to enhance the adrenergic stimulation of the second messenger cAMP and cGMP. This indicates that PDE10A downregulates adrenergic cAMP and cGMP signaling by decreasing the half-life of both nucleotides. Consistent with its effect on cAMP, PDE10A inhibition also amplifies adrenergic induction of the cAMP-inducible gene arylalkylamine N-acetyltransferase (Aanat) which codes the rate-limiting enzyme in pineal melatonin formation. The findings of this study suggest that Pde10a expression is under circadian and seasonal regulation and plays a modulatory role in pineal signal transduction and gene expression.
Collapse
Affiliation(s)
- Isabella Spiwoks-Becker
- Institute of Microanatomy, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Peliciari-Garcia RA, Marçal AC, Silva JA, Carmo-Buonfiglio D, Amaral FG, Afeche SC, Cipolla-Neto J, Carvalho CR. Insulin temporal sensitivity and its signaling pathway in the rat pineal gland. Life Sci 2010; 87:169-74. [DOI: 10.1016/j.lfs.2010.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 04/23/2010] [Accepted: 06/09/2010] [Indexed: 11/29/2022]
|
7
|
|
8
|
Andjelkov N, Elvenes J, Knutsen G, Johansen O. Beta-endorphin regulation of MAPKs in cultured human articular chondrocytes: MAPK inhibitors prevent the increase of IL-1 beta protein levels during beta-endorphin stimulation. ACTA ACUST UNITED AC 2007; 14:1-8. [PMID: 17453826 DOI: 10.1080/15419060701224708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We investigated the effect of beta-endorphin on the activities of mitogen-activated protein kinases in cultured human articular chondrocytes in order to elucidate its effect on cartilage. Monolayer cultures of chondrocytes obtained from patients undergoing total knee arthroplasty were treated with 60, 600, or 6000 ng/ml beta-endorphin, or 100 ng/ml naltrexone combined with 600 ng/ml beta-endorphin. The regulation of three major mitogen-activated protein kinases phosphorylation, ERKp44/p42, p38, and JNK, was determined by Western blotting. We also examined the influence of specific mitogen-activated protein kinase inhibitors on IL-1 beta protein levels during beta-endorphin stimulation. The results demonstrate that beta-endorphin, dependent on concentration and duration of stimulation, significantly affected the activation of the three mitogen-activated protein kinases in cultured human articular chondrocytes. Naltrexone in some cases significantly regulated the mitogen-activated protein kinases in different ways when added to beta-endorphin 600 ng/ml. Furthermore, specific mitogen-activated protein kinase inhibitors hindered the increase of IL-1 beta during beta-endorphin incubation. The effect of beta-endorphin seen in this study is considered critical for the production of several mediators of cartilage damage in an arthritic joint.
Collapse
|
9
|
Wu W, Zhang X, Zanello LP. 1alpha,25-Dihydroxyvitamin D(3) antiproliferative actions involve vitamin D receptor-mediated activation of MAPK pathways and AP-1/p21(waf1) upregulation in human osteosarcoma. Cancer Lett 2007; 254:75-86. [PMID: 17412493 PMCID: PMC2760385 DOI: 10.1016/j.canlet.2007.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 02/14/2007] [Indexed: 11/16/2022]
Abstract
The molecular mechanisms underlying antiproliferative actions of the steroid 1alpha,25-dihydroxy vitamin D(3) (1,25D) in human osteosarcoma cells are known only partially. To better understand the signaling involved in 1,25D anti-tumorigenic properties in bone, we stably silenced vitamin D receptor (VDR) expression in the human osteosarcoma SaOS-2 cell line. We found that 1,25D treatment reduced cell proliferation by approximately 25% after 3 days only in SaOS-2 cells expressing native levels of VDR protein, and involved activation of MAPK/AP-1/p21(waf1) pathways. Both sustained (3 days) and transient (15min) 1,25D treatment activated JNK and ERK1/2 MAPK signaling in a nongenomic VDR-dependent manner. However, only sustained exposure to hormone led to upregulation of p21 and subsequent genomic control of the cell cycle. Specific blockade of MEK1/MEK2 cascade upstream from ERK1/2 abrogated 1,25D activation of AP-1 and p21, and subsequent antiproliferative effects, even in the presence of a nuclear VDR. We conclude that 1,25D-induced inhibition of human osteosarcoma cell proliferation occurs via sustained activation of JNK and MEK1/MEK2 pathways downstream of nongenomic VDR signaling that leads to upregulation of a c-Jun/c-Fos (AP-1) complex, which in turn modulates p21(waf1) gene expression. Our results demonstrate a cross-talk between 1,25D/VDR nongenomic and genomic signaling at the level of MAP kinase activation that leads to reduction of cell proliferation in human osteosarcoma cells.
Collapse
Affiliation(s)
- Wei Wu
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Xiaoyu Zhang
- Department of Biochemistry, University of California, Riverside, CA 92521
| | - Laura P. Zanello
- Department of Biochemistry, University of California, Riverside, CA 92521
| |
Collapse
|
10
|
Maronde E, Pfeffer M, Glass Y, Stehle JH. Transcription factor dynamics in pineal gland and liver of the Syrian hamster (Mesocricetus auratus) adapts to prevailing photoperiod. J Pineal Res 2007; 43:16-24. [PMID: 17614831 DOI: 10.1111/j.1600-079x.2007.00438.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The anticipation of day length and duration of darkness is necessary and advantageous for animals to survive and requires a photoperiodic memory. In the Syrian hamster this adaptation to photoperiod is mirrored by seasonal changes in the animal's reproductive state and its liver metabolism. Both events are linked to season-dependent alterations of the nocturnally elevated synthesis of the pineal hormone melatonin. To decipher molecules that are involved in this temporal gating, hamsters were exposed to long photoperiod (16 hr light:8 hr darkness; LP), or short photoperiod (8 hr light:16 hr darkness; SP). Dynamics in gene expression was investigated in the pineal gland [inducible cAMP early repressor (ICER)], and in the liver (ICER; C/EBPdelta; clock genes) using immunochemistry and reverse transcriptase PCR. While in the pineal, ICER rhythms tightly follow the prior duration of light and dark with decreasing levels at the beginning of the dark period in both LP and SP, ICER is not rhythmic in liver. In the liver, clock genes and their protein products reflect differences in photoperiodic history, with enhanced rhythm amplitudes of PER, CRY, CLOCK, and BMAL1 under SP conditions. Thus, in the Syrian hamster transcription factor expression patterns lock onto the prevailing photoperiod in two peripheral oscillators, the pineal gland and the liver, to function as mediators of suprachiasmatic nucleus-derived information on environmental light and dark. This tissue-specific gating in gene transcription represents a strategy to ameliorate consequences of altering environmental lighting conditions on endocrine and metabolic parameters that endow a strong circadian bias.
Collapse
Affiliation(s)
- Erik Maronde
- Dr Senckenbergische Anatomie, Institute of Anatomy III, Johann Wolfgang Goethe University, Frankfurt Frankfurt/Main, Germany
| | | | | | | |
Collapse
|
11
|
Calvert VS, Collantes R, Elariny H, Afendy A, Baranova A, Mendoza M, Goodman Z, Liotta LA, Petricoin EF, Younossi ZM. A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis. Hepatology 2007; 46:166-72. [PMID: 17596878 DOI: 10.1002/hep.21688] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
UNLABELLED Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. CONCLUSION These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.
Collapse
Affiliation(s)
- Valerie S Calvert
- George Mason-Inova Health System's Translational Research Centers, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Price DM, Wloka MT, Chik CL, Ho AK. Mitogen-activated protein kinase phosphatase-1 (MKP-1) preferentially dephosphorylates p42/44MAPK but not p38MAPK in rat pinealocytes. J Neurochem 2007; 101:1685-93. [PMID: 17437549 DOI: 10.1111/j.1471-4159.2007.04557.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently reported a diurnal and norepinephrine (NE) -induced expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the rat pineal gland and postulated that this MKP-1 expression might impact adrenergic-regulated arylalkylamine-N-acetyltransferase (AA-NAT) activity via modulation of MAPKs. In this study, we investigated the effect of depletion of MKP-1 expression by using doxorubicin, a topoisomerase inhibitor that suppresses the expression of MKP-1 in other cell types and small interfering RNA targeted against Mkp1 in NE-stimulated pinealocytes. We found that both treatments were effective in inhibiting NE induction of MKP-1 expression. Moreover, both treatments also resulted in a prolonged activation of p42/44MAPK and an increase in AA-NAT induction by NE. In contrast, treatment of pinealocytes with PD98059, an inhibitor of MAPK kinase, reduced NE-stimulated AA-NAT activity. Interestingly, suppressing MKP-1 expression had no effect on the time profile of NE-stimulated p38MAPK activation. These results indicate that MKP-1 modulates the profile of AA-NAT activity by selectively shaping the activation profile of p42/44MAPK but not that of p38MAPK.
Collapse
Affiliation(s)
- Donald M Price
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
13
|
Maronde E, Stehle JH. The mammalian pineal gland: known facts, unknown facets. Trends Endocrinol Metab 2007; 18:142-9. [PMID: 17374488 DOI: 10.1016/j.tem.2007.03.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 02/07/2007] [Accepted: 03/08/2007] [Indexed: 10/23/2022]
Abstract
In the mammalian pineal gland, information on environmental lighting conditions that is neuronally encoded by the retina is converted into nocturnally elevated synthesis of the hormone melatonin. Evolutionary pressure has changed the morphology of vertebrate pinealocytes, eliminating direct photoreception and the endogenous clock function. Despite these changes, nocturnally elevated melatonin synthesis has remained a reliable indicator of time throughout evolution. In the photo-insensitive mammalian pineal gland this message of darkness depends on the master circadian pacemaker in the hypothalamic suprachiasmatic nuclei. The dramatic change in vertebrate pinealocytes has received little attention; here, we therefore link the known evolutionary morphodynamics and well-investigated biochemical details responsible for rhythmic synthesis of melatonin with recently characterized patterns of gene expression in the pineal gland. We also address the enigmatic function of clockwork molecules in mammalian pinealocytes.
Collapse
Affiliation(s)
- Erik Maronde
- Dr. Senckenbergische Anatomie, Institute of Anatomy III, Johann Wolfgang Goethe-Universität Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
14
|
Price DM, Terriff DL, Chik CL, Ho AK. The role of protein turnover in regulating MKP-1 levels in rat pinealocytes. Mol Cell Endocrinol 2007; 263:134-41. [PMID: 17079074 DOI: 10.1016/j.mce.2006.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/04/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is induced at night under the control of a photoneural system in the rat pineal gland. Because of the established roles of MAPKs, glucocorticoids and proteasome activity in regulating MKP-1 expression in other cell types, their relative contributions to MKP-1 regulation were investigated in rat pinealocytes. We found that neither inhibition of MAPKs nor treatment with dexamethasone affected norepinephrine-stimulated MKP-1 expression. In contrast, treatment with proteasome inhibitors increased norepinephrine-stimulated MKP-1 protein levels and abolished the decline in norepinephrine-stimulated MKP-1 protein levels caused by inhibition of transcription or translation, or blockade of alpha-adrenergic receptors. Taken together, our results indicate that in rat pinealocytes, the continuous and rapid turnover of MKP-1 protein allows for its rapid induction but is not sufficient to generate the sustained increase in MKP-1 expression post-adrenergic stimulation.
Collapse
Affiliation(s)
- D M Price
- Department of Physiology, University of Alberta, 7-26 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|