1
|
Zhang T, Liu Y, Yang Y, Luo J, Hao C. The Effect and Mechanism of Regular Exercise on Improving Insulin Impedance: Based on the Perspective of Cellular and Molecular Levels. Int J Mol Sci 2025; 26:4199. [PMID: 40362436 PMCID: PMC12071773 DOI: 10.3390/ijms26094199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Insulin resistance is more common in the elderly, and with the improvement in people's living standards and changes in lifestyle habits, the incidence of insulin resistance in other age groups is also increasing year by year. Overweight and obesity caused by abnormal fat metabolism or accumulation can significantly reduce glucose intake, which is the direct cause of insulin resistance and the trigger for the occurrence and development of type II diabetes. This article reviews and analyzes relevant literature on empirical research on the effect of regular exercise on improving insulin resistance. It was found that the most important step in carbohydrate metabolism is the translocation of glucose transporter 4 (GLUT4) to the cell membrane, carrying water-soluble glucose through the lipid soluble cell membrane to complete carbohydrate transport. The process of glucose transporter protein translocation to the cell membrane can be driven by two different signaling pathways: one is the insulin information transfer pathway (ITP), the second is to induce the ITP of monophosphate-activated protein kinase (AMPK) through hypoxia or muscle contraction. For type II diabetes patients, the insulin signal transmission pathway through insulin receptors (IRS1, IRS2) and phosphatidylinositol 3-kinase (PI3K) (PI3K) is damaged, which results in the decrease in glucose absorption stimulated by insulin in skeletal muscle, while the noninsulin signal transmission pathway of AMPK in these patients is normal. It can be seen that regular exercise can regulate glucose intake and the metabolism of skeletal muscle, improve insulin resistance, reduce fasting blood glucose and glycosylated hemoglobin in diabetes patients, and thus, effectively regulate blood glucose. However, many steps in the molecular mechanism of how exercise training improves systemic insulin resistance are still not fully understood, and further discussion is needed in the future.
Collapse
Affiliation(s)
- Tingran Zhang
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Yongsen Liu
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Yi Yang
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Jiong Luo
- College of Physical Education, Southwest University, Chongqing 400715, China; (T.Z.); (Y.L.); (Y.Y.); (J.L.)
| | - Chen Hao
- College of Physical Education, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Kilic F. The nature of the binding between insulin receptor and serotonin transporter in placenta (review). Placenta 2023; 133:40-44. [PMID: 36796293 DOI: 10.1016/j.placenta.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
The interplay between the insulin receptor (IR) and serotonin transporter (SERT) allows reciprocal regulation of each other's physiological roles to ensure appropriate responses to specific environmental and developmental signals. The studies reported herein provided substantial evidence of how insulin signaling influences the modification and trafficking of SERT to the plasma membrane via enabling its association with specific endoplasmic reticulum (ER) proteins. While insulin signaling is important for the modifications of SERT proteins, the fact that phosphorylation of IR was significantly down-regulated in the placenta of SERT knock out (KO) mice suggests that SERT also regulates IR. Further suggestive of SERT functional regulation of IR, SERT-KO mice developed obesity and glucose intolerance with symptoms similar to those of type 2 diabetes. The picture emerging from those studies proposes that the interplay between IR and SERT maintains conditions supportive of IR phosphorylation and regulates insulin signaling in placenta which ultimately enables the trafficking of SERT to the plasma membrane. IR-SERT association thus appears to play a protective metabolic role in placenta and is impaired under diabetic conditions. This review focuses on recent findings describing the functional and physical associations between IR and SERT in placental cells, and the dysregulation of this process in diabetes.
Collapse
Affiliation(s)
- Fusun Kilic
- Biology Department, Merced College, Merced, CA, USA.
| |
Collapse
|
3
|
Fermented Psidium guajava leaves regulate the gut microbiota and improve metabolic alterations in diabetic mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cell Dev Biol Anim 2022; 58:384-395. [PMID: 35648337 DOI: 10.1007/s11626-022-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
The cell proliferation of bovine mammary epithelial cells (BMECs) and consequent milk synthesis are regulated by multiple factors. The purpose of this study was to examine the effect of 14-3-3β on cellular proliferation and milk fat/β-casein synthesis in BMECs and reveal its underlying mechanisms. In this study, we employed gene function analysis to explore the regulatory effect and molecular mechanisms of 14-3-3β on milk synthesis and proliferation in BMECs. We found that leucine and IGF-1 enhance cell proliferation and milk synthesis in a 14-3-3β-dependent manner and only exhibiting such effect in the presence of 14-3-3β. We further determined that 14-3-3β interacts with the IGF1R self-phosphorylation site and it additionally mediated leucine and IGF-1 to stimulate the synthesis of milk through the IGF1R-AKT-mTORC1 signaling pathway. In summary, our data indicated that 14-3-3β mediates the expression of milk fat and protein stimulated by leucine and IGF-1, leading to lactogenesis through IGF1R signaling pathway in BMECs.
Collapse
|
5
|
Zhong X, Gu J, Zhang S, Chen X, Zhang J, Miao J, Ding Z, Xu J, Cheng H. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 2022; 819:146265. [PMID: 35121026 DOI: 10.1016/j.gene.2022.146265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/04/2022]
Abstract
Peripheral 5-hydroxytryptamine (5-HT, also called serotonin) is reportedly a potential therapeutic target in obesity-related metabolic diseases due to its regulatory role in energy homeostasis in mammals. However, information on the detailed effect of peripheral 5-HT on the energy metabolism in fishes, especially the lipid metabolism, and the underlying mechanism remains elusive. In this study, a diet-induced obesity model was developed in the zebrafish (Danio rerio), a prototypical animal model for metabolic disorders. The zebrafish were fed a high-fat diet for 8 weeks and were simultaneously injected with PBS, 0.1 mM and 10 mM 5-HT, intraperitoneally. The body weight was significantly lower in the zebrafish injected with 0.1 mM 5-HT (P < 0.05), however, there was no change in body length (P > 0.05) at the end of the 8-week treatment. The muscle tissues from the zebrafish treated with PBS and 5-HT were collected for transcriptomic analysis and the RNA-seq revealed 1134, 3713, and 2535 genes were screened out compared to the muscular DEGs among three groups. The enrichment analysis revealed DEGs to be significantly associated with multiple metabolic pathways, including ribosome, oxidative phosphorylation, proteasome, PPAR signaling pathway, and ferroptosis. Additionally, the qRT-PCR validated 12 DEGs out of which 10 genes exhibited consistent trends. Taken together, this data provided useful information on the transcriptional characteristics of the muscle tissue in the obese zebrafish exposed to 5-HT, offering important insights into the regulatory effect of peripheral 5-HT in teleosts, as well as novel approaches for preventing and treating obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Xiangqi Zhong
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiaze Gu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Siying Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Key Laboratory of Cultivation and High-value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jingjing Zhang
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jintao Miao
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Biotechnology/Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
6
|
Belica-Pacha S, Małecka M, Daśko M, Miłowska K, Bryszewska M, Budryn G, Oracz J, Pałecz B. The Interaction of Heptakis (2,6-di-O-Methyl)-β-cyclodextrin with Mianserin Hydrochloride and Its Influence on the Drug Toxicity. Int J Mol Sci 2021; 22:ijms22179419. [PMID: 34502332 PMCID: PMC8430726 DOI: 10.3390/ijms22179419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
One tetracyclic antidepressant, mianserin hydrochloride (MIA), has quite significant side effects on a patients’ health. Cyclodextrins, which are most commonly used to reduce the undesirable features of contained drugs within their hydrophobic interior, also have the potential to alter the toxic behavior of the drug. The present paper contains investigations and the characteristics of interaction mechanisms for MIA and the heptakis (2,6-di-O-methyl)-β-cyclodextrin (DM-β-CD) system, and evaluated the effects of the complexation on MIA cytotoxicity. In order to assess whether there was an interaction between MIA and DM-β-CD molecules, isothermal titration calorimetry (ITC) have been chosen. Electrospray ionization mass spectrometry (ESI-MS) helped to establish the complex stoichiometry, and circular dichroism spectroscopy was used to describe the process of complex formation. In order to make a wider interpretative perspective, the molecular docking results have been performed. The viability of Chinese hamster cells were investigated in the presence of DM-β-CD and its complexes with MIA in order to estimate the cytotoxicity of the drug and the conjugate with the chosen cyclodextrin. The viability of B14 cells treated with MIA+DM-β-CD is lower (the toxicity is higher) than with MIA alone, and no protective effects have been observed for complexes of MIA with DM-β-CD in any ratio.
Collapse
Affiliation(s)
- Sylwia Belica-Pacha
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
- Correspondence:
| | - Magdalena Małecka
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
| | - Mateusz Daśko
- Department of Inorganic Chemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Katarzyna Miłowska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (K.M.); (M.B.)
| | - Grażyna Budryn
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4-10, 90-924 Lodz, Poland; (G.B.); (J.O.)
| | - Joanna Oracz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4-10, 90-924 Lodz, Poland; (G.B.); (J.O.)
| | - Bartłomiej Pałecz
- Unit of Biophysical Chemistry, Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236 Lodz, Poland; (M.M.); (B.P.)
| |
Collapse
|
7
|
Kaur H, Moreau R. Curcumin represses mTORC1 signaling in Caco-2 cells by a two-sided mechanism involving the loss of IRS-1 and activation of AMPK. Cell Signal 2020; 78:109842. [PMID: 33234350 DOI: 10.1016/j.cellsig.2020.109842] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central modulator of inflammation and tumorigenesis in the gastrointestinal tract. Growth factors upregulate mTORC1 via the PI3K/AKT and/or Ras/MAPK signal pathways. Curcumin (CUR), a polyphenol found in turmeric roots (Curcuma longa) can repress mTORC1 kinase activity in colon cancer cell lines; however, key aspects of CUR mechanism of action remain to be elucidated including its primary cellular target. We investigated the molecular effects of physiologically attainable concentration of CUR (20 μM) in the intestinal lumen on mTORC1 signaling in Caco-2 cells. CUR markedly inhibited mTORC1 kinase activity as determined by the decreased phosphorylation of p70S6K (Thr389, -99%, P < 0.0001) and S6 (Ser235/236, -92%, P < 0.0001). Mechanistically, CUR decreased IRS-1 protein abundance (-80%, P < 0.0001) thereby downregulating AKT phosphorylation (Ser473, -94%, P < 0.0001) and in turn PRAS40 phosphorylation (Thr246, -99%, P < 0.0001) while total PRAS40 abundance was unchanged. The use of proteasome inhibitor MG132 showed that CUR-mediated loss of IRS-1 involved proteasomal degradation. CUR lowered Raptor protein abundance, which combined with PRAS40 hypophosphorylation, suggests CUR repressed mTORC1 activity by inducing compositional changes that hinder the complex assembly. In addition, CUR activated AMPK (Thr172 phosphorylation, P < 0.0001), a recognized repressor of mTORC1, and AMPK upstream regulator LKB1. Although cargo adapter protein p62 was decreased by CUR (-49%, P < 0.004), CUR did not significantly induce autophagy. Inhibition of AKT/mTORC1 signaling by CUR may have lifted the cross-inhibition onto MAPK signaling, which became induced; p-ERK1/2 (+670%, P < 0.0001), p-p38 (+1433%, P < 0.0001). By concomitantly targeting IRS-1 and AMPK, CUR's mechanism of mTORC1 inhibition is distinct from that of rapamycin.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
8
|
Belica-Pacha S, Miłowska K, Ionov M, Bryszewska M, Buczkowski A, Budryn G, Oracz J, Zaczyńska D, Wróblewska A, Urbaniak P, Pałecz B. The impact of β-cyclodextrin on biological and chemical properties of mianserin hydrochloride in aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but Not Ketamine, Produce Persistent Antidepressant-like Effects in a Rodent Experimental System for the Study of Depression. ACS Chem Neurosci 2020; 11:864-871. [PMID: 32133835 DOI: 10.1021/acschemneuro.9b00493] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Psilocybin shows efficacy to alleviate depression in human clinical trials for six or more months after only one or two treatments. Another hallucinogenic drug, esketamine, has recently been U.S. Food and Drug Administration (FDA)-approved as a rapid-acting antidepressant. The mechanistic basis for the antidepressant effects of psilocybin and ketamine appear to be conserved. The efficacy of these two medications has not, however, been directly compared either clinically or preclinically. Further, whether or not a profound subjective existential experience is necessary for psilocybin to have antidepressant effects is unknown. To address these questions, we tested psilocybin, lysergic acid diethylamide (LSD), and ketamine in a rat model for depression. As in humans, a single administration of psilocybin or LSD produced persistent antidepressant-like effects in our model. In contrast, ketamine produced only a transient antidepressant-like effect. Our results indicate that classic psychedelics may have therapeutic efficacy that is more persistent than that of ketamine, and also suggest that a subjective existential experience may not be necessary for therapeutic effects.
Collapse
Affiliation(s)
- Meghan Hibicke
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Alexus N. Landry
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Hannah M. Kramer
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Zoe K. Talman
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| | - Charles D. Nichols
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, United States
| |
Collapse
|
10
|
El-Shobaki F, Abdel-Azee AS, Hegazy AM, Hassouna HZ, Badawy I. Amelioration of Hyperglycemia and Associated Health Hazards Using Two Dietary Formulas Composed of Multiple Ingredients. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajft.2017.227.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Ma S, Li T, Guo K, Li X, An S, Hou S, Chen R, Yang B, Liu S, Fu J. Effective treatment with combination of peripheral 5-hydroxytryptamine synthetic inhibitor and 5-hydroxytryptamine 2 receptor antagonist on glucocorticoid-induced whole-body insulin resistance with hyperglycemia. J Diabetes Investig 2016; 7:833-844. [PMID: 27177506 PMCID: PMC5089945 DOI: 10.1111/jdi.12526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/24/2016] [Accepted: 03/16/2016] [Indexed: 12/12/2022] Open
Abstract
AIMS/INTRODUCTION Our previous study found that dexamethasone-induced insulin resistance (IR) was involved in 5-hydroxytryptamine (5-HT) synthesis and 5-hydroxytryptamine 2 receptor (5-HT2 R) in the periphery. The present study examined the effects of inhibitions of both peripheral 5-HT synthesis and 5-HT2 R on dexamethasone-induced IR. MATERIALS AND METHODS Male rats were exposed to dexamethasone for 10 days, then treated with or without a 5-HT2 R antagonist, sarpogrelate, a 5-HT synthetic inhibitor, carbidopa, alone or in combination for 20 days. RESULTS Dexamethasone-induced whole-body IR, with glucose intolerance, decreased insulin sensitivity, hyperglycemia, hyperinsulinemia and dyslipidemia, could be effectively abolished by sarpogrelate or/and carbidopa, whereas IR-related actions of dexamethasone in tissues were accompanied by increased 5-HT synthesis in the liver and visceral adipose, and upregulated 5-HT2 R (5-HT2A R and 5-HT2B R) expression in these two tissues as well as in skeletal muscle. Sarpogrelate or/and carbidopa treatment significantly abolished dexamethasone-caused tissue-specific IR. In the liver, increased gluconeogenesis, triglycerides and very low-density lipoprotein syntheses with steatosis, and downregulated expression of plasmalemmal glucose transporter-2 were markedly reversed. In the visceral adipose and skeletal muscle, downregulated expression of plasmalemmal glucose transporter-4 was significantly reversed, and increased lipolysis was also reversed in the visceral adipose. Dexamethasone-induced activations of hepatic mammalian target of rapamycin serine2448 , and S6K threonine389/412 phosphorylation were also abolished markedly by sarpogrelate or/and carbidopa. Co-treatment with sarpogrelate and carbidopa showed a synergistic effect on suppressing dexamethasone actions. CONCLUSION Inhibitions of both peripheral 5-HT synthesis and 5-HT2 R are expected to be a dependable target for treatment of steroid-induced diabetes.
Collapse
Affiliation(s)
- Shaoxin Ma
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Tao Li
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Keke Guo
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Xin Li
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan An
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan Hou
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Ru Chen
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Bo Yang
- Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Siyu Liu
- Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Jihua Fu
- Department of Physiology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
12
|
Li X, Guo K, Li T, Ma S, An S, Wang S, Di J, He S, Fu J. 5-HT 2 receptor mediates high-fat diet-induced hepatic steatosis and very low density lipoprotein overproduction in rats. Obes Res Clin Pract 2016; 12:16-28. [PMID: 27133527 DOI: 10.1016/j.orcp.2016.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND 5-HT has been shown to mediate abnormality of hepatic lipid metabolism through activation of mammalian target of rapamycin (mTOR). However, it is unclear whether 5-HT is directly involved in high-fat diet (HFD)-induced hepatic steatosis. MATERIALS AND METHODS Male rats were allocated into seven groups with control, either HFD feeding, 5-HT treatment, or HFD feeding and 5-HT treatment with or without sarpogrelate treatment, all of which were executed for 4 weeks. HepG2 cells were exposed to 5-HT or palmitic acid (PA) with or without rapamycin or Sar treatment. RESULTS Rats fed with HFD or exposed to 5-HT led to abnormalities with activated hepatic mTOR-S6K pathway, overproduction of hepatic triglycerides and VLDL with steatosis, and hyperlipidemia, which were exacerbated by a combination of HFD and 5-HT. Sarpogrelate significantly inhibited above abnormalities induced by HFD and 5-HT, alone or in a combination. Additionally, HFD caused up-regulation of 5-HT2 receptors (5-HT2R), including 5-HT2AR and 5-HT2BR, and 5-HT synthesis in the liver, without obvious influence on other 5-HT receptors gene expression. In HepG2 cells, both PA and 5-HT induced overproduction of triglycerides and VLDL with lipid droplets, and PA up-regulated 5-HT2AR and 5-HT2BR expression and 5-HT synthesis as well. Rapamycin fully abolished PA or 5-HT-induced mTOR activation, which was more effective than sarpogrelate. However, the inhibitory effects of rapamycin on PA or 5-HT-induced overproduction of triglycerides and VLDL were less than sarpogrelate. CONCLUSIONS Up-regulation of hepatic 5-HT2R and 5-HT synthesis by HFD is crucial for HFD-induced overproduction of hepatic triglycerides and VLDL with hyperlipidemia.
Collapse
Affiliation(s)
- Xin Li
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Keke Guo
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Tao Li
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shaoxin Ma
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan An
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan Wang
- Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Jiao Di
- Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Siyu He
- Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Jihua Fu
- Department of Physiology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
13
|
Abstract
New evidence has recently emerged defining a close relationship between fat and bone metabolism. Adipose tissue is one of the largest organs in the body but its functions vary by location and origin. Adipocytes can act in an autocrine manner to regulate energy balance by sequestering triglycerides and then, depending on demand, releasing fatty acids through lipolysis for energy utilization, and in some cases through uncoupling protein 1 for generating heat. Adipose tissue can also act in an endocrine or paracrine manner by releasing adipokines that modulate the function of other organs. Bone is one of those target tissues, although recent evidence has emerged that the skeleton reciprocates by releasing its own factors that modulate adipose tissue and beta cells in the pancreas. Therefore, it is not surprising that these energy-modulating tissues are controlled by a central regulatory mechanism, primarily the sympathetic nervous system. Disruption in this complex regulatory circuit and its downstream tissues is manifested in a wide range of metabolic disorders, for which the most prevalent is type 2 diabetes mellitus. The aim of this review is to summarize our knowledge of common determinants in the bone and adipose function and the translational implications of recent work in this emerging field.
Collapse
Affiliation(s)
- Beata Lecka-Czernik
- Dept. of Orthopaedic Surgery, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States; Dept. of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo Health Sciences Campus, Toledo, OH 43614, United States
| | - Clifford J Rosen
- Tufts University School of Medicine, and Maine Medical Center Research Institute, Scarborough, ME 04074, United States.
| |
Collapse
|
14
|
Fu J, Ma S, Li X, An S, Li T, Guo K, Lin M, Qu W, Wang S, Dong X, Han X, Fu T, Huang X, Wang T, He S. Long-term Stress with Hyperglucocorticoidemia-induced Hepatic Steatosis with VLDL Overproduction Is Dependent on both 5-HT2 Receptor and 5-HT Synthesis in Liver. Int J Biol Sci 2016; 12:219-34. [PMID: 26884719 PMCID: PMC4737678 DOI: 10.7150/ijbs.13062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/23/2015] [Indexed: 01/09/2023] Open
Abstract
Hepatic triglycerides production and adipose lipolysis are pivotal for long-term stress (LTS) or hyperglucocorticoidemia-induced insulin resistance. 5-hydroxytryptamine (5-HT) has been demonstrated to induce hepatic lipid metabolic abnormality by activating mammalian target of rapamycin (mTOR). In present study, we explored whether 5-HT is involved in LTS effects in liver using restraint stress-exposed rats and cultured primary rat hepatocytes and HepG2 cells. LTS with hyperglucocorticoidemia induced hepatic 5-HT synthetic increase with tryptophan hydroxylase 1 (Tph1) up-regulation, and 5-HT2 receptor (5-HT2R, including 5-HT2A, 2B receptor) up-regulation in liver and visceral adipose, as well as hepatic mTOR activation with triglycerides and VLDL overproduction with steatosis, and visceral adipose lipolytic increase with high blood free fatty acids (FFAs) level. 5-HT exposure exhibited LTS-like effects in both tissues, and both LTS and 5-HT effects could be abolished significantly by blocking 5-HT2R. In HepG2 cells dexamethasone or palmitate-induced mTOR activation with triglycerides and VLDL overproduction were accompanied by up-regulations of 5-HT synthesis and 5-HT2R, which were significantly abolished by gene silencing Tph1 or 5-HT2R and were almost fully abolished by co-silencing of both, especially on VLDL overproduction. Chemical inhibition of Tph1 or/and 5-HT2R in both hepatocytes exhibited similar abolishment with genetic inhibition on dexamethason-induced effects. 5-HT-stimulated effects in both hepatocytes were fully abolished by blocking 5-HT2R, while 5-HT itself also up-regulated 5-HT2R. In conclusion, up-regulated hepatic 5-HT synthesis and 5-HT2R induced by both glucocorticoid and FFAs are crucial for LTS-induced hepatic steatosis with VLDL overproduction, while 5-HT by acting on 5-HT2R mediates mTOR activation in liver.
Collapse
Affiliation(s)
- Jihua Fu
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shaoxin Ma
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Xin Li
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan An
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Tao Li
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Keke Guo
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Min Lin
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Wei Qu
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Shanshan Wang
- 1. Postgraduates of China Pharmaceutical University, Nanjing, China
| | - Xinyue Dong
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Xiaoyu Han
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Ting Fu
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Xinping Huang
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Tianying Wang
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| | - Siyu He
- 2. Undergraduates of China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Cytoprotection of pancreatic β-cells and hypoglycemic effect of 2-hydroxypropyl-β-cyclodextrin: sertraline complex in alloxan-induced diabetic rats. Chem Biol Interact 2016; 244:105-12. [DOI: 10.1016/j.cbi.2015.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 11/30/2022]
|
16
|
Li T, Guo K, Qu W, Han Y, Wang S, Lin M, An S, Li X, Ma S, Wang T, Ji S, Hanson C, Fu J. Important role of 5-hydroxytryptamine in glucocorticoid-induced insulin resistance in liver and intra-abdominal adipose tissue of rats. J Diabetes Investig 2015; 7:32-41. [PMID: 26816599 PMCID: PMC4718103 DOI: 10.1111/jdi.12406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/13/2015] [Accepted: 07/02/2015] [Indexed: 12/20/2022] Open
Abstract
Aim/Introduction Both glucocorticoids and 5‐hydroxytryptamine (5‐HT) have been shown to induce insulin resistance (IR) in hepatocytes and adipocytes. Here, we explore whether there is a correlation between them. Materials and Methods Except for the control group, male rats were exposed to dexamethasone treated with or without para‐chlorophenylalanine (pCPA), or carbidopa for 20 days. Except for the control group, buffalo rat liver 3A (BRL‐3A) cells were exposed to dexamethasone for 24 h, treated with or without pCPA, carbidopa, or clorgiline for 48 h, or exposed to 5‐HT treated with or without fluoxetine for 48 h. Whole‐body IR was determined by both glucose tolerance test and measurement of fasting blood glucose and insulin, whereas hepatocytes or adipocytes IR was determined by examining either hepatic gluconeogenesis, steatosis and glucose transporter 2 expression or lipolysis. Results Dexamethasone‐induced whole‐body IR, liver and intraabdominal adipose IR were accompanied by upregulated expressions of tryptophan hydroxylase‐1 and aromatic amino acid decarboxylase with increased 5‐HT level in both tissues, which were attenuated significantly by pCPA, inhibiting tryptophan hydroxylase‐1, or carbidopa, inhibiting aromatic amino acid decarboxylase. [Correction added on 22 September 2015, after first online publication: ‘inhibiting aromatic amino acid decarboxylase’ was duplicated and has been replaced by ‘tryptophan hydroxylase‐1’.] In the BRL‐3A cells, dexamethasone‐induced IR was also accompanied by upregulated 5‐HT synthesis in dose‐ and time‐dependent manners, and was attenuated by pCPA or carbidopa, but exacerbated by clorgiline, inhibiting monoamine oxidase‐A to further increase 5‐HT level. Dexamethasone also enhanced 5‐HT 2A and 2B receptor expressions in both tissues and BRL‐3A cells. Additionally, blocking 5‐HT transporter with fluoxetine significantly suppressed 5‐HT‐induced IR in BRL‐3A cells. Conclusion Enhancement of 5‐HT synthesis in liver and intra‐abdominal adipose is an important reason for glucocorticoids‐induced IR.
Collapse
Affiliation(s)
- Tao Li
- Department of Physiology Nanjing China
| | - Keke Guo
- Department of Physiology Nanjing China
| | - Wei Qu
- Department of Physiology Nanjing China
| | - Ying Han
- Department of Physiology Nanjing China
| | | | - Min Lin
- Department of Physiology Nanjing China
| | | | - Xin Li
- Department of Physiology Nanjing China
| | | | - Tianying Wang
- Undergraduates of China Pharmaceutical University Nanjing China
| | - Shiya Ji
- Undergraduates of China Pharmaceutical University Nanjing China
| | | | - Jihua Fu
- Department of Physiology Nanjing China
| |
Collapse
|
17
|
El-Merahbi R, Löffler M, Mayer A, Sumara G. The roles of peripheral serotonin in metabolic homeostasis. FEBS Lett 2015; 589:1728-34. [PMID: 26070423 DOI: 10.1016/j.febslet.2015.05.054] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/26/2015] [Accepted: 05/30/2015] [Indexed: 11/30/2022]
Abstract
Metabolic homeostasis in the organism is assured both by the nervous system and by hormones. Among a plethora of hormones regulating metabolism, serotonin presents a number of unique features. Unlike classical hormones serotonin is produced in different anatomical locations. In brain it acts as a neurotransmitter and in the periphery it can act as a hormone, auto- and/or paracrine factor, or intracellular signaling molecule. Serotonin does not cross the blood-brain barrier; therefore the two major pools of this bioamine remain separated. Although 95% of serotonin is produced in the periphery, its functions have been ignored until recently. Here we review the impact of the peripheral serotonin on the regulation of function of the organs involved in glucose and lipid homeostasis.
Collapse
Affiliation(s)
- Rabih El-Merahbi
- Rudolf Virchow Center for Experimental Biomedicine University of Würzburg, Josef-Schneider-Str. 2, Haus D15, D-97080 Würzburg, Germany
| | - Mona Löffler
- Rudolf Virchow Center for Experimental Biomedicine University of Würzburg, Josef-Schneider-Str. 2, Haus D15, D-97080 Würzburg, Germany
| | - Alexander Mayer
- Rudolf Virchow Center for Experimental Biomedicine University of Würzburg, Josef-Schneider-Str. 2, Haus D15, D-97080 Würzburg, Germany
| | - Grzegorz Sumara
- Rudolf Virchow Center for Experimental Biomedicine University of Würzburg, Josef-Schneider-Str. 2, Haus D15, D-97080 Würzburg, Germany.
| |
Collapse
|
18
|
Carsote M, Radoi V, Geleriu A, Mihai A, Ferechide D, Opris D, Paun D, Poiana C. Serotonin and the bone assessment. J Med Life 2014; 7 Spec No. 2:49-53. [PMID: 25870673 PMCID: PMC4391347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Lately, the in vitro and in vivo studies on serotonin metabolism have been pointing its influence in bone health. Also, there are no particular recommendations in performing the serum serotonin assessment in order to evaluate the skeletal status. AIM We aimed to correlate the bone turnover markers and lumbar bone mineral density (BMD) with serotonin. MATERIAL AND METHODS There is a cross-sectional study in Caucasian postmenopausal women. They were not diagnosed with carcinoid syndrome, or bone anomalies, and received no treatment (including antiresorptives). The following bone formation markers were performed: serum alkaline phosphatase (AP), serum osteocalcin (OC), and the bone resorption marker: serum CrossLaps (CL). Serum serotonin (high-pressure liquid chromatography), as well as central DXA (GE Prodigy) were assessed. RESULTS 191 women of 57.1 years mean age were grouped according to DXA (WHO criteria). The linear regression analysis between serum serotonin and CL were not statistically significant (SS), between serotonin and OC was SS in the newly diagnosed osteoporosis group (N=40, r=0.4, p=0.03), between serotonin and AP SS was found in osteopenia group (N=88, r=0.24, p=0.03), with no changes when adjusting for age and BMI. The partial correlation between serotonin and BMD was not SS. DISCUSSION The study raises the question of serotonin as a bone metabolism marker seeing that the results were not consistent. The main limit of our study was that we did not analyze the possible use of antidepressants to these women. Overall, this was a pilot study in clinical practice where few reports have been published, but still necessary, because the use of serum serotonin in current skeletal evaluation is still unclear.
Collapse
Affiliation(s)
- M Carsote
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - V Radoi
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A Geleriu
- "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Mihai
- "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - D Ferechide
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Opris
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Paun
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Poiana
- "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania ; "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
19
|
Carsote M, Radoi V, Geleriu A, Mihai A, Ferechide D, Opris D, Paun D, Poiana C. The serotonin and the bone assessment. J Med Life 2013; 6:151-155. [PMID: 23904874 PMCID: PMC3725439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/10/2013] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Lately, the in vitro and in vivo studies on serotonin metabolism pointed their influence in bone health. In addition, there are no particular recommendations in performing the serum serotonin assessment in order to evaluate the skeletal status. Aim. We aimed to correlate the bone turnover markers and lumbar bone mineral density (BMD) with serotonin. MATERIAL AND METHODS There is a cross-sectional study in Caucasian postmenopausal women. They were not diagnosed with carcinoid syndrome, or bone anomalies, and received no treatment (including antiresorptives). We performed the bone formation markers: serum alkaline phosphatase (AP), serum osteocalcin (OC), and the bone resorption marker: serum CrossLaps (CL). Serum serotonin (high-pressure liquid chromatography), as well as central DXA (GE Prodigy) were assessed. RESULTS 191 women of 57.1 years mean age were grouped according to DXA (WHO criteria). The linear regression analysis between serum serotonin and CL was not statistically significant (SS), between serotonin and OC was SS in the newly diagnosed osteoporosis group (N=40, r=0.4, p=0.03), between serotonin and AP we found SS in osteopenia group (N=88, r=0.24, p=0.03), with no changes when adjusting for age and BMI. The partial correlation between serotonin and BMD was not SS. DISCUSSION The study raises the question of serotonin as a bone metabolism marker seeing that the results were not consistent. The main limit of our study is that we did not analyze the possible use of antidepressants by these women. Overall, this is a pilot study in clinical practice in which few reports have been published yet, but still necessary because the use of serum serotonin in current skeletal evaluation is still unclear.
Collapse
Affiliation(s)
- M Carsote
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|