1
|
Han H, Yang Y, Jiao Y, Qi H, Han Z, Wang L, Dong L, Tian J, Vanhaesebroeck B, Li X, Liu J, Ma G, Lei H. Leverage of nuclease-deficient CasX for preventing pathological angiogenesis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:738-748. [PMID: 37662968 PMCID: PMC10469388 DOI: 10.1016/j.omtn.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Gene editing with a CRISPR/Cas system is a novel potential strategy for treating human diseases. Pharmacological inhibition of phosphoinositide 3-kinase (PI3K) δ suppresses retinal angiogenesis in a mouse model of oxygen-induced retinopathy. Here we show that an innovative system of adeno-associated virus (AAV)-mediated CRISPR/nuclease-deficient (d)CasX fused with the Krueppel-associated box (KRAB) domain is leveraged to block (81.2% ± 6.5%) in vitro expression of p110δ, the catalytic subunit of PI3Kδ, encoded by Pik3cd. This CRISPR/dCasX-KRAB (4, 269 bp) system is small enough to be fit into a single AAV vector. We then document that recombinant AAV serotype (rAAV)1 efficiently transduces vascular endothelial cells from pathologic retinal vessels, which show high expression of p110δ; furthermore, we demonstrate that blockade of retinal p110δ expression by intravitreally injected rAAV1-CRISPR/dCasX-KRAB targeting the Pik3cd promoter prevents (32.1% ± 5.3%) retinal p110δ expression as well as pathological retinal angiogenesis in a mouse model of oxygen-induced retinopathy. These data establish a strong foundation for treating pathological angiogenesis by AAV-mediated CRISPR interference with p110δ expression.
Collapse
Affiliation(s)
- Haote Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Yanhui Yang
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, the School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, People’s Republic of China
| | - Yunjuan Jiao
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hui Qi
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Zhuo Han
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Luping Wang
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | - Lijun Dong
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| | - Jingkui Tian
- Institute of Basic Medicine and Cancer, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310000, People’s Republic of China
| | | | - Xiaopeng Li
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junwen Liu
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha 410013, People’s Republic of China
| | - Gaoen Ma
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Hetian Lei
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen 518000, People’s Republic of China
| |
Collapse
|
2
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
3
|
Khazeei Tabari MA, Mirjalili R, Khoshhal H, Shokouh E, Khandan M, Hasheminasabgorji E, Hafezi-Moghadam A, Bagheri A. Nature against Diabetic Retinopathy: A Review on Antiangiogenic, Antioxidant, and Anti-Inflammatory Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4708527. [PMID: 35310030 PMCID: PMC8926515 DOI: 10.1155/2022/4708527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Background and Purpose. Diabetes mellitus (DM), hyperglycemia, and hypertension can result in diabetic retinopathy (DR), which is a major cause of blindness on a global scale. Development of DR is associated with decreased endothelial cells, increased basal membrane thickness, permeation of the retinal blood barrier, and neovascularization in patients. The purpose of the present review is to provide an overview of the findings regarding applications of phytochemicals for DR treatment and could be a beneficial resource for further clinical studies and also a basis for pharmaceutical purposes for drug design. Materials and Methods. A narrative literature review was performed from electronic databases including Web of Science, PubMed, and Scopus to analyze the effects of different phytochemicals to prevent or treat oxidation, angiogenesis, and inflammation in diabetic retinopathy. The inclusion criteria were original studies, which included the effects of different phytochemicals on diabetic retinopathy. The exclusion criteria included studies other than original articles, studies which assessed the effects of phytochemicals on nondiabetic retinopathy, and studies which used phytochemical-rich extracts. Results and Conclusions. Studies have shown that increased levels of inflammatory cytokines, angiogenic, and oxidative stress factors are involved in the progression and pathogenesis of DR. Therefore, phytochemicals with their anti-inflammatory, antiangiogenic, and antioxidant properties can prevent DR progression and retinal damage through various cellular mechanisms. It is also shown that some phytochemicals can simultaneously affect the inflammation, oxidation, and angiogenesis in DR.
Collapse
Affiliation(s)
- Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razie Mirjalili
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hooman Khoshhal
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elahe Shokouh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohanna Khandan
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Elham Hasheminasabgorji
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Abouzar Bagheri
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
4
|
Xie G, Yang J, Wei X, Xu Q, Qin M. Separation of acteoside and linarin from Buddlejae Flos by high‐speed countercurrent chromatography and their anti‐inflammatory activities. J Sep Sci 2020; 43:1450-1457. [DOI: 10.1002/jssc.201901062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyong Xie
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Jie Yang
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Xiaonan Wei
- The Sixth People's Hospital of Hengshui Hengshui P. R. China
| | - Qiuhong Xu
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese MedicineSchool of Traditional Chinese PharmacyChina Pharmaceutical University Nanjing P. R. China
| |
Collapse
|
5
|
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Recombinant human maspin inhibits high glucose-induced oxidative stress and angiogenesis of human retinal microvascular endothelial cells via PI3K/AKT pathway. Mol Cell Biochem 2018; 446:127-136. [PMID: 29363056 DOI: 10.1007/s11010-018-3280-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/13/2022]
Abstract
Maspin is known as a tumor suppressor and a potent angiogenesis inhibitor, however, its effects on proliferative diabetic retinopathy (PDR) have not been fully elucidated. This study aimed at evaluating the effects of maspin on high glucose-induced oxidative stress and angiogenesis in human retinal microvascular endothelial cells (HRMECs). Herein, HRMECs were treated with 0.25, 0.5, or 1 µM recombinant human maspin in the presence of 30 mM glucose, and their proliferation, tube formation, and oxidative stress responses were further detected. Our results revealed that maspin inhibited the high glucose-induced proliferation, migration, and tube formation of HRMECs. Maspin also decreased reactive oxygen species, nitric oxide level, and increased glutathione S-transferase activity in HRMECs. Meanwhile, maspin reduced the mRNA and protein levels of hypoxia-inducible factor-1α and vascular endothelial growth factor in high glucose-stimulated cells in a dose-dependent manner. Additionally, the high glucose-induced elevation of phosphorylated phosphoinositide-3-kinase (p-PI3K) and phosphorylated AKT was also suppressed by maspin. In summary, our data suggest that maspin inhibits high glucose-induced proliferation, oxidative stress, and angiogenesis of HRMECs at least by modulating the PI3K/AKT pathway. Maspin may be a potential therapeutic agent for the prevention and treatment of PDR.
Collapse
Affiliation(s)
- Feng Qiu
- Department of Ophthalmology, Shenyang Fourth People's Hospital, 20 South Huanghe Avenue, Shenyang, 110031, People's Republic of China.
| | - Huijuan Tong
- Department of Nursing, Shenyang Medical College, Shenyang, 110034, People's Republic of China
| | - Yawen Wang
- Department of Ophthalmology, Shenyang Fourth People's Hospital, 20 South Huanghe Avenue, Shenyang, 110031, People's Republic of China
| | - Jun Tao
- Department of Ophthalmology, Shenyang Fourth People's Hospital, 20 South Huanghe Avenue, Shenyang, 110031, People's Republic of China
| | - Hailin Wang
- Department of Ophthalmology, Shenyang Fourth People's Hospital, 20 South Huanghe Avenue, Shenyang, 110031, People's Republic of China
| | - Lei Chen
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| |
Collapse
|
6
|
Decursin and decursinol angelate: molecular mechanism and therapeutic potential in inflammatory diseases. Inflamm Res 2017; 67:209-218. [PMID: 29134229 DOI: 10.1007/s00011-017-1114-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/17/2023] Open
Abstract
Epidemiological studies have shown that inflammation plays a critical role in the development and progression of various chronic diseases, including cancers, neurological diseases, hepatic fibrosis, diabetic retinopathy, and vascular diseases. Decursin and decursinol angelate (DA) are pyranocoumarin compounds obtained from the roots of Angelica gigas. Several studies have described the anti-inflammatory effects of decursin and DA. Decursin and DA have shown potential anti-inflammatory activity by modulating growth factors such as vascular endothelial growth factor, transcription factors such as signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells, cellular enzymes including matrix metalloproteinases cyclooxygenase, and protein kinases such as extracellular receptor kinase, phosphatidylinositol-3-kinase, and protein kinase C. These compounds have the ability to induce apoptosis by activating pro-apoptotic proteins and the caspase cascade, and reduced the expression of anti-apoptotic proteins such as B-cell lymphoma 2 and B-cell lymphoma-extra-large. Interaction with multiple molecular targets and cytotoxic effects, these two compounds are favorable candidates for treating various chronic inflammatory diseases such as cancers (prostate, breast, leukemia, cervical, and myeloma), rheumatoid arthritis, diabetic retinopathy, hepatic fibrosis, osteoclastogenesis, allergy, and Alzheimer's disease. We have summarized the preliminary studies regarding the biological effects of decursin and DA. In this review, we will also highlight the functions of coumarin compounds that can be translated to a clinical practice for the treatment and prevention of various inflammatory ailments.
Collapse
|
7
|
Zhang R, Garrett Q, Zhou H, Wu X, Mao Y, Cui X, Xie B, Liu Z, Cui D, Jiang L, Zhang Q, Xu S. Upregulation of miR-195 accelerates oxidative stress-induced retinal endothelial cell injury by targeting mitofusin 2 in diabetic rats. Mol Cell Endocrinol 2017; 452:33-43. [PMID: 28487236 DOI: 10.1016/j.mce.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
This study was performed to investigate the oxidative stress-induced miRNA changes in relation to pathogenesis of diabetic retinopathy (DR) and to establish a functional link between miRNAs and oxidative stress-induced retinal endothelial cell injury. Our results demonstrated that oxidative stress could induce alterations of miRNA expression profile, including up-regulation of miR-195 in the diabetic retina or cultured HMRECs after exposed to H2O2 or HG (P < 0.05). Oxidative stress also resulted in a significant reduction of MFN2 expression in diabetic retina or HMRECs (P < 0.05). Overexpression of miR-195 reduced MFN2 protein levels, and induced tube formation and increased permeability of diabetic retinal vasculature. The luciferase reporter assay confirmed that miR-195 binds to the 3' -untranslated region (3'-UTR) of MFN2 mRNA. This study suggested that miR-195 played a critical role in oxidative stress-induced retinal endothelial cell injury by targeting MFN2 in diabetic rats.
Collapse
Affiliation(s)
- Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Qian Garrett
- The University of New South Wales, Sydney, NSW 2052, Australia; The University of Notre Dame Australia, NSW 2008, Australia
| | - Huimin Zhou
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| | - Xiaoxi Wu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yueran Mao
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Ximing Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, PR China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Qingfu Zhang
- Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| |
Collapse
|
8
|
Yehya AH, Asif M, Tan YJ, Sasidharan S, Abdul Majid AM, Oon CE. Broad spectrum targeting of tumor vasculature by medicinal plants: An updated review. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
9
|
Agarwal A, Ingham SA, Harkins KA, Do DV, Nguyen QD. The role of pharmacogenetics and advances in gene therapy in the treatment of diabetic retinopathy. Pharmacogenomics 2016; 17:309-20. [PMID: 26807609 DOI: 10.2217/pgs.15.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) and its complications such as diabetic macular edema continue to remain a major cause for legal blindness in the developed world. While the introduction of anti-tVEGF agents has significantly improved visual outcomes of patients with DR, unpredictable response, largely due to genetic polymorphisms, appears to be a challenge with this therapy. With advances in identification of various genetic biomarkers, novel therapeutic strategies consisting of gene transfer are being developed and tested for patients with DR. Application of pharmacogenetic principles appears to be a promising futuristic strategy to attenuate diabetes-mediated retinal vasculopathy. In this comprehensive review, data from recent studies in the field of pharmacogenomics for the treatment of DR have been provided.
Collapse
Affiliation(s)
- Aniruddha Agarwal
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Sally A Ingham
- College of Medicine, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Keegan A Harkins
- Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Diana V Do
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| | - Quan Dong Nguyen
- Ocular Imaging Research & Reading Center (OIRRC), Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA.,Stanley M. Truhlsen Eye Institute, University of Nebraska Medical Center, South 42nd Street & Emile St, Omaha, NE 68198, USA
| |
Collapse
|
10
|
Antiangiogenic Effect of Ethanol Extract of Vigna angularis via Inhibition of Phosphorylation of VEGFR2, Erk, and Akt. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:371368. [PMID: 26357521 PMCID: PMC4556864 DOI: 10.1155/2015/371368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/31/2022]
Abstract
Though dietary azuki bean (Vigna angularis) seed containing antioxidant proanthocyanidins was known to have multibiological activities including antioxidant, hypotensive, anti-inflammatory, and immunomodulatory activities, the antiangiogenic activity of ethanol extract of Vigna angularis (EVA) was never reported so far. In the present study, the antiangiogenic mechanism of EVA was examined in human umbilical vein endothelial cells (HUVECs). EVA showed weak cytotoxicity in HUVECs, while it significantly suppressed the VEGF induced proliferation of HUVECs. Consistently, wound healing assay revealed that EVA inhibited the VEGF induced migration of HUVECs. Also, EVA abrogated the VEGF induced tube formation of HUVECs in a concentration dependent fashion. Furthermore, Matrigel plug assay showed that EVA significantly reduced the hemoglobin level of Matrigel plug in mice compared to untreated control. Of note, EVA effectively attenuated the phosphorylation of VEGFR2, Erk, and Akt in VEGF-treated HUVECs. Overall, our findings suggest that EVA inhibits angiogenesis in VEGF-treated HUVECs via inhibition of phosphorylation of VEGFR2, ERK, and Akt.
Collapse
|
11
|
Wang Y, Yang C, Gu Q, Sims M, Gu W, Pfeffer LM, Yue J. KLF4 Promotes Angiogenesis by Activating VEGF Signaling in Human Retinal Microvascular Endothelial Cells. PLoS One 2015; 10:e0130341. [PMID: 26075898 PMCID: PMC4467843 DOI: 10.1371/journal.pone.0130341] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/19/2015] [Indexed: 11/24/2022] Open
Abstract
The transcription factor Krüppel-like factor 4 (KLF4) has been implicated in regulating cell proliferation, migration and differentiation in a variety of human cells and is one of four factors required for the induction of pluripotent stem cell reprogramming. However, its role has not been addressed in ocular neovascular diseases. This study investigated the role of KLF4 in angiogenesis and underlying molecular mechanisms in human retinal microvascular endothelial cells (HRMECs). The functional role of KLF4 in HRMECs was determined following lentiviral vector mediated inducible expression and shRNA knockdown of KLF4. Inducible expression of KLF4 promotes cell proliferation, migration and tube formation. In contrast, silencing KLF4 inhibits cell proliferation, migration, tube formation and induces apoptosis in HRMECs. KLF4 promotes angiogenesis by transcriptionally activating VEGF expression, thus activating the VEGF signaling pathway in HRMECs.
Collapse
Affiliation(s)
- Yinan Wang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, P. R. China
| | - Chuanhe Yang
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Qingqing Gu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Michelle Sims
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Weiwang Gu
- Department of Laboratory Animal Center, Southern Medical University, Guangzhou, P. R. China
- * E-mail: (JY); (WG)
| | - Lawrence M. Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Junming Yue
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Center for Cancer Research, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail: (JY); (WG)
| |
Collapse
|
12
|
Abstract
This is a summary of current and emerging pharmacologic therapies utilized in the treatment of diabetic retinopathy (DR). Current therapies, such as ranibizumab, bevacizumab, triamcinolone acetonide, and fluocinolone acetonide, inhibit angiogenesis and inflammation and may be used alone or in combination with laser treatment. Emerging therapies aim to reduce oxidative stress or inhibit other signal transduction pathways, including the protein kinase C cascade and aldose reductase pathway. Future therapies may target other molecules crucial to the pathogenesis of DR, including hepatocyte growth factors and matrix metalloproteinase 9. Finally, the emergence of novel mechanisms of medication delivery may also be on the horizon.
Collapse
Affiliation(s)
- Vaidehi S. Dedania
- Department of Ophthalmology, Albany Medical Center, Lions Eye Institute, Albany, NY 12208, USA
| | - Sophie J. Bakri
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Li J, Liu CH, Sun Y, Gong Y, Fu Z, Evans LP, Tian KT, Juan AM, Hurst CG, Mammoto A, Chen J. Endothelial TWIST1 promotes pathological ocular angiogenesis. Invest Ophthalmol Vis Sci 2014; 55:8267-77. [PMID: 25414194 DOI: 10.1167/iovs.14-15623] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Pathological neovessel formation impacts many blinding vascular eye diseases. Identification of molecular signatures distinguishing pathological neovascularization from normal quiescent vessels is critical for developing new interventions. Twist-related protein 1 (TWIST1) is a transcription factor important in tumor and pulmonary angiogenesis. This study investigated the potential role of TWIST1 in modulating pathological ocular angiogenesis in mice. METHODS Twist1 expression and localization were analyzed in a mouse model of oxygen-induced retinopathy (OIR). Pathological ocular angiogenesis in Tie2-driven conditional Twist1 knockout mice were evaluated in both OIR and laser-induced choroidal neovascularization models. In addition, the effects of TWIST1 on angiogenesis and endothelial cell function were analyzed in sprouting assays of aortic rings and choroidal explants isolated from Twist1 knockout mice, and in human retinal microvascular endothelial cells treated with TWIST1 small interfering RNA (siRNA). RESULTS TWIST1 is highly enriched in pathological neovessels in OIR retinas. Conditional Tie2-driven depletion of Twist1 significantly suppressed pathological neovessels in OIR without impacting developmental retinal angiogenesis. In a laser-induced choroidal neovascularization model, Twist1 deficiency also resulted in significantly smaller lesions with decreased vascular leakage. In addition, loss of Twist1 significantly decreased vascular sprouting in both aortic ring and choroid explants. Knockdown of TWIST1 in endothelial cells led to dampened expression of vascular endothelial growth factor receptor 2 (VEGFR2) and decreased endothelial cell proliferation. CONCLUSIONS Our study suggests that TWIST1 is a novel regulator of pathologic ocular angiogenesis and may represent a new molecular target for developing potential therapeutic treatments to suppress pathological neovascularization in vascular eye diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States Department of Ophthalmology, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Chi-Hsiu Liu
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Ye Sun
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Yan Gong
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Lucy P Evans
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Katherine T Tian
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Aimee M Juan
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Christian G Hurst
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Akiko Mammoto
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Jing Chen
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
14
|
Sulaiman RS, Basavarajappa HD, Corson TW. Natural product inhibitors of ocular angiogenesis. Exp Eye Res 2014; 129:161-71. [PMID: 25304218 DOI: 10.1016/j.exer.2014.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
Abstract
Natural products are characterized by high chemical diversity and biochemical specificity; therefore, they are appealing as lead compounds for drug discovery. Given the importance of angiogenesis to many pathologies, numerous natural products have been explored as potential anti-angiogenic drugs. Ocular angiogenesis underlies blinding eye diseases such as retinopathy of prematurity (ROP) in children, proliferative diabetic retinopathy (DR) in adults of working age, and age-related macular degeneration (AMD) in the elderly. Despite the presence of effective therapy in many cases, these diseases are still a significant health burden. Anti-VEGF biologics are the standard of care, but may cause ocular or systemic side effects after intraocular administration and patients may be refractory. Many anti-angiogenic compounds inhibit tumor growth and metastasis alone or in combination therapy, but a more select subset of them has been tested in the context of ocular neovascular diseases. Here, we review the promise of natural products as anti-angiogenic agents, with a specific focus on retinal and choroidal neovascularization. The multifunctional curcumin and the chalcone isoliquiritigenin have demonstrated promising anti-angiogenic effects in mouse models of DR and choroidal neovascularization (CNV) respectively. The homoisoflavanone cremastranone and the flavonoid deguelin have been shown to inhibit ocular neovascularization in more than one disease model. The isoflavone genistein and the flavone apigenin on the other hand are showing potential in the prevention of retinal and choroidal angiogenesis with long-term administration. Many other products with anti-angiogenic potential in vitro such as the lactone withaferin A, the flavonol quercetin, and the stilbenoid combretastatin A4 are awaiting investigation in different ocular disease-relevant animal models. These natural products may serve as lead compounds for the design of more specific, efficacious, and affordable drugs with minimal side effects.
Collapse
Affiliation(s)
- Rania S Sulaiman
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Halesha D Basavarajappa
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
15
|
Zhou KK, Benyajati S, Le Y, Cheng R, Zhang W, Ma JX. Interruption of Wnt signaling in Müller cells ameliorates ischemia-induced retinal neovascularization. PLoS One 2014; 9:e108454. [PMID: 25271989 PMCID: PMC4182699 DOI: 10.1371/journal.pone.0108454] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/29/2014] [Indexed: 01/26/2023] Open
Abstract
Retinal Müller cells are major producers of inflammatory and angiogenic cytokines which contribute to diabetic retinopathy (DR). Over-activation of the Wnt/β-catenin pathway has been shown to play an important pathogenic role in DR. However, the roles of Müller cell-derived Wnt/β-catenin signaling in retinal neovascularization (NV) and DR remain undefined. In the present study, mice with conditional β-catenin knockout (KO) in Müller cells were generated and subjected to oxygen-induced retinopathy (OIR) and streptozotocin (STZ)-induced diabetes. Wnt signaling was evaluated by measuring levels of β-catenin and expression of its target genes using immunoblotting. Retinal vascular permeability was measured using Evans blue as a tracer. Retinal NV was visualized by angiography and quantified by counting pre-retinal nuclei. Retinal pericyte loss was evaluated using retinal trypsin digestion. Electroretinography was performed to examine visual function. No abnormalities were detected in the β-catenin KO mice under normal conditions. In OIR, retinal levels of β-catenin and VEGF were significantly lower in the β-catenin KO mice than in littermate controls. The KO mice also had decreased retinal NV and vascular leakage in the OIR model. In the STZ-induced diabetic model, disruption of β-catenin in Müller cells attenuated over-expression of inflammatory cytokines and ameliorated pericyte dropout in the retina. These findings suggest that Wnt signaling activation in Müller cells contributes to retinal NV, vascular leakage and inflammation and represents a potential therapeutic target for DR.
Collapse
Affiliation(s)
- Kelu Kevin Zhou
- Department of Physiology, Harold Hamm Diabetes Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Siribhinya Benyajati
- Department of Physiology, Harold Hamm Diabetes Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Yun Le
- Department of Medicine Endocrinology, Harold Hamm Diabetes Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Rui Cheng
- Department of Physiology, Harold Hamm Diabetes Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, the University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jian-xing Ma
- Department of Physiology, Harold Hamm Diabetes Center, the University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
16
|
Szabadfi K, Pinter E, Reglodi D, Gabriel R. Neuropeptides, trophic factors, and other substances providing morphofunctional and metabolic protection in experimental models of diabetic retinopathy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 311:1-121. [PMID: 24952915 DOI: 10.1016/b978-0-12-800179-0.00001-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vision is the most important sensory modality for many species, including humans. Damage to the retina results in vision loss or even blindness. One of the most serious complications of diabetes, a disease that has seen a worldwide increase in prevalence, is diabetic retinopathy. This condition stems from consequences of pathological metabolism and develops in 75% of patients with type 1 and 50% with type 2 diabetes. The development of novel protective drugs is essential. In this review we provide a description of the disease and conclude that type 1 diabetes and type 2 diabetes lead to the same retinopathy. We evaluate existing experimental models and recent developments in finding effective compounds against this disorder. In our opinion, the best models are the long-term streptozotocin-induced diabetes and Otsuka Long-Evans Tokushima Fatty and spontaneously diabetic Torii rats, while the most promising substances are topically administered somatostatin and pigment epithelium-derived factor analogs, antivasculogenic substances, and systemic antioxidants. Future drug development should focus on these.
Collapse
Affiliation(s)
- Krisztina Szabadfi
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary.
| | - Erika Pinter
- Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary; Department of Pharmacology and Pharmacotherapy, University of Pecs, Pecs, Hungary
| | - Dora Reglodi
- Department of Anatomy, PTE MTA Lendulet-PACAP Research Team, University of Pecs, Pecs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pecs, Pecs, Hungary; Janos Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
17
|
Rezzola S, Belleri M, Gariano G, Ribatti D, Costagliola C, Semeraro F, Presta M. In vitro and ex vivo retina angiogenesis assays. Angiogenesis 2013; 17:429-42. [DOI: 10.1007/s10456-013-9398-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/03/2013] [Indexed: 12/16/2022]
|