1
|
Lui DTW, Tan KCB. High-density lipoprotein in diabetes: Structural and functional relevance. J Diabetes Investig 2024; 15:805-816. [PMID: 38416054 PMCID: PMC11215696 DOI: 10.1111/jdi.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024] Open
Abstract
Low levels of high-density lipoprotein-cholesterol (HDL-C) is considered a major cardiovascular risk factor. However, recent studies have suggested a more U-shaped association between HDL-C and cardiovascular disease. It has been shown that the cardioprotective effect of HDL is related to the functions of HDL particles rather than their cholesterol content. HDL particles are highly heterogeneous and have multiple functions relevant to cardiometabolic conditions including cholesterol efflux capacity, anti-oxidative, anti-inflammatory, and vasoactive properties. There are quantitative and qualitative changes in HDL as well as functional abnormalities in both type 1 and type 2 diabetes. Non-enzymatic glycation, carbamylation, oxidative stress, and systemic inflammation can modify the HDL composition and therefore the functions, especially in situations of poor glycemic control. Studies of HDL proteomics and lipidomics have provided further insights into the structure-function relationship of HDL in diabetes. Interestingly, HDL also has a pleiotropic anti-diabetic effect, improving glycemic control through improvement in insulin sensitivity and β-cell function. Given the important role of HDL in cardiometabolic health, HDL-based therapeutics are being developed to enhance HDL functions rather than to increase HDL-C levels. Among these, recombinant HDL and small synthetic apolipoprotein A-I mimetic peptides may hold promise for preventing and treating diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- David Tak Wai Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Kathryn Choon Beng Tan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| |
Collapse
|
2
|
Modulation of Unfolded Protein Response Restores Survival and Function of β-Cells Exposed to the Endocrine Disruptor Bisphenol A. Int J Mol Sci 2023; 24:ijms24032023. [PMID: 36768343 PMCID: PMC9916570 DOI: 10.3390/ijms24032023] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetes is a metabolic disease that currently affects nearly half a billion people worldwide. β-cells dysfunction is one of the main causes of diabetes. Exposure to endocrine-disrupting chemicals is correlated with increased diabetes incidence. We hypothesized that treatment with bisphenol A (BPA) induces endoplasmic reticulum (ER) stress that activates the unfolded protein response (UPR), leading to impaired function of the β-cells, which over time, can cause diabetes. In this study, we aimed to evaluate UPR pathways activation under BPA treatment in β-cells and possible recovery of ER homeostasis. MIN6 cells (mouse insulinoma cell line) and isolated pancreatic islets from NOR (non-obese diabetes resistant) mice were treated with BPA. We analyzed the impact of BPA on β-cell viability, the architecture of the early secretory pathway, the synthesis and processing of insulin and the activation of UPR sensors and effectors. We found that the addition of the chemical chaperone TUDCA rescues the deleterious effects of BPA, resulting in improved viability, morphology and function of the β-cells. In conclusion, we propose that modulators of UPR can be used as therapeutic interventions targeted towards regaining β-cells homeostasis.
Collapse
|
3
|
Zheng A, Dubuis G, Georgieva M, Ferreira CSM, Serulla M, Del Carmen Conde Rubio M, Trofimenko E, Mercier T, Decosterd L, Widmann C. HDLs extract lipophilic drugs from cells. J Cell Sci 2021; 135:273878. [PMID: 34981808 PMCID: PMC8919334 DOI: 10.1242/jcs.258644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
High-density lipoproteins (HDLs) prevent cell death induced by a variety of cytotoxic drugs. The underlying mechanisms are however still poorly understood. Here, we present evidence that HDLs efficiently protect cells against thapsigargin (TG), a sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA) inhibitor, by extracting the drug from cells. Drug efflux could also be triggered to some extent by low-density lipoproteins and serum. HDLs did not reverse the non-lethal mild ER stress response induced by low TG concentrations or by SERCA knockdown, but HDLs inhibited the toxic SERCA-independent effects mediated by high TG concentrations. HDLs could extract other lipophilic compounds, but not hydrophilic substances. This work shows that HDLs utilize their capacity of loading themselves with lipophilic compounds, akin to their ability to extract cellular cholesterol, to reduce the cell content of hydrophobic drugs. This can be beneficial if lipophilic xenobiotics are toxic but may be detrimental to the therapeutic benefit of lipophilic drugs such as glibenclamide. Summary: HDLs, akin to their capacity for extracting cholesterol, can remove lipophilic compounds from cells, thus protecting the cells when these compounds are toxic.
Collapse
Affiliation(s)
- Adi Zheng
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| | - Maria Georgieva
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| | | | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| | | | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| | - Thomas Mercier
- Laboratory of Clinical Pharmacology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Laurent Decosterd
- Laboratory of Clinical Pharmacology, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Bugnon 7, 1005 Lausanne, Switzerland
| |
Collapse
|
4
|
Thakkar H, Vincent V, Sen A, Singh A, Roy A. Changing Perspectives on HDL: From Simple Quantity Measurements to Functional Quality Assessment. J Lipids 2021; 2021:5585521. [PMID: 33996157 PMCID: PMC8096543 DOI: 10.1155/2021/5585521] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 12/29/2022] Open
Abstract
High-density lipoprotein (HDL) comprises a heterogeneous group of particles differing in size, density, and composition. HDL cholesterol (HDL-C) levels have long been suggested to indicate cardiovascular risk, inferred from multiple epidemiological studies. The failure of HDL-C targeted interventions and genetic studies has raised doubts on the atheroprotective role of HDL-C. The current consensus is that HDL-C is neither a biomarker nor a causative agent of cardiovascular disorders. With better understanding of the complex nature of HDL which comprises a large number of proteins and lipids with unique functions, recent focus has shifted from HDL quantity to HDL quality in terms of atheroprotective functions. The current research is focused on developing laboratory assays to assess HDL functions for cardiovascular risk prediction. Also, HDL mimetics designed based on the key determinants of HDL functions are being investigated to modify cardiovascular risk. Improving HDL functions by altering its composition is the key area of future research in HDL biology to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Himani Thakkar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vinnyfred Vincent
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atanu Sen
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ambuj Roy
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
5
|
Cochran BJ, Ong KL, Manandhar B, Rye KA. High Density Lipoproteins and Diabetes. Cells 2021; 10:cells10040850. [PMID: 33918571 PMCID: PMC8069617 DOI: 10.3390/cells10040850] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have established that a high plasma high density lipoprotein cholesterol (HDL-C) level is associated with reduced cardiovascular risk. However, recent randomised clinical trials of interventions that increase HDL-C levels have failed to establish a causal basis for this relationship. This has led to a shift in HDL research efforts towards developing strategies that improve the cardioprotective functions of HDLs, rather than simply increasing HDL-C levels. These efforts are also leading to the discovery of novel HDL functions that are unrelated to cardiovascular disease. One of the most recently identified functions of HDLs is their potent antidiabetic properties. The antidiabetic functions of HDLs, and recent key advances in this area are the subject of this review. Given that all forms of diabetes are increasing at an alarming rate globally, there is a clear unmet need to identify and develop new approaches that will complement existing therapies and reduce disease progression as well as reverse established disease. Exploration of a potential role for HDLs and their constituent lipids and apolipoproteins in this area is clearly warranted. This review highlights focus areas that have yet to be investigated and potential strategies for exploiting the antidiabetic functions of HDLs.
Collapse
Affiliation(s)
| | | | | | - Kerry-Anne Rye
- Correspondence: ; Tel.: +61-2-9385-1219; Fax: +61-2-9385-1389
| |
Collapse
|
6
|
Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2019; 9:e013531. [PMID: 31888429 PMCID: PMC6988162 DOI: 10.1161/jaha.119.013531] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikash Manandhar
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Blake J Cochran
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Kerry-Anne Rye
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
7
|
Szili-Torok T, Annema W, Anderson JLC, Bakker SJL, Tietge UJF. HDL Cholesterol Efflux Predicts Incident New-Onset Diabetes After Transplantation (NODAT) in Renal Transplant Recipients Independent of HDL Cholesterol Levels. Diabetes 2019; 68:1915-1923. [PMID: 31375510 DOI: 10.2337/db18-1267] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/29/2019] [Indexed: 11/13/2022]
Abstract
In renal transplant recipients (RTRs), new-onset diabetes after transplantation (NODAT) is a frequent and serious complication limiting survival of graft and patient. However, the underlying pathophysiology remains incompletely understood. In vitro and in preclinical models, HDL can preserve β-cell function, largely by mediating cholesterol efflux, but this concept has not been evaluated in humans. This study investigated whether baseline cholesterol efflux capacity (CEC) in RTRs is associated with incident NODAT during follow-up. This prospective longitudinal study included 405 diabetes-free RTRs with a functioning graft for >1 year. During a median (interquartile range) follow-up of 9.6 (6.6-10.2) years, 57 patients (14.1%) developed NODAT. HDL CEC was quantified using incubation of human macrophage foam cells with apolipoprotein B-depleted plasma. Baseline CEC was significantly lower in patients developing NODAT during follow-up (median 6.84% [interquartile range 5.84-7.50%]) compared with the NODAT-free group (7.44% [6.46-8.60%]; P = 0.001). Kaplan-Meier analysis showed a lower risk for incident NODAT with increasing sex-stratified tertiles of HDL efflux capacity (P = 0.004). Linear regression analysis indicated that CEC is independently associated with incident NODAT (P = 0.04). In Cox regression analyses, CEC was significantly associated with NODAT (hazard ratio 0.53 [95% CI 0.38-0.76]; P < 0.001), independent of HDL cholesterol levels (P = 0.015), adiposity (P = 0.018), immunosuppressive medication (P = 0.001), and kidney function (P = 0.01). Addition of CEC significantly improved the predictive power of the Framingham Diabetes Risk Score (P = 0.004). This study establishes HDL CEC as a strong predictor of NODAT in RTRs, independent of several other recognized risk factors.
Collapse
Affiliation(s)
- Tamas Szili-Torok
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wijtske Annema
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Josephine L C Anderson
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Zhu R, Li X, Xu J, Barrabi C, Kekulandara D, Woods J, Chen X, Liu M. Defective endoplasmic reticulum export causes proinsulin misfolding in pancreatic β cells. Mol Cell Endocrinol 2019; 493:110470. [PMID: 31158417 PMCID: PMC6613978 DOI: 10.1016/j.mce.2019.110470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/30/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for cell function. Increasing evidence indicates that, efficient protein ER export is important for ER homeostasis. However, the consequence of impaired ER export remains largely unknown. Herein, we found that defective ER protein transport caused by either Sar1 mutants or brefeldin A impaired proinsulin oxidative folding in the ER of β-cells. Misfolded proinsulin formed aberrant disulfide-linked dimers and high molecular weight proinsulin complexes, and induced ER stress. Limiting proinsulin load to the ER alleviated ER stress, indicating that misfolded proinsulin is a direct cause of ER stress. This study revealed significance of efficient ER export in maintaining ER protein homeostasis and native folding of proinsulin. Given the fact that proinsulin misfolding plays an important role in diabetes, this study suggests that enhancing ER export may be a potential therapeutic target to prevent/delay β-cell failure caused by proinsulin misfolding and ER stress.
Collapse
Affiliation(s)
- Ruimin Zhu
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jialu Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cesar Barrabi
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Dilini Kekulandara
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - James Woods
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Xuequn Chen
- Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
9
|
Zheng A, Dubuis G, Ferreira CSM, Pétremand J, Vanli G, Widmann C. The PI3K/Akt pathway is not a main driver in HDL-mediated cell protection. Cell Signal 2019; 62:109347. [PMID: 31229616 DOI: 10.1016/j.cellsig.2019.109347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022]
Abstract
High-density lipoproteins (HDLs) can protect cells against a variety of death-inducing stresses. This is often accompanied by activation of the anti-apoptotic Akt kinase but whether this activation mediates the protective functions of HDLs is still unclear. In this study, we evaluated the roles of PI3K/Akt signaling in endoplasmic reticulum (ER) stress- and starvation-induced cell death using pharmacological and genetic approaches to gain a better understanding of the relationship between Akt- and HDL-mediated protection. Three cell models were used for this purpose, a primary endothelial cell line, an insulinoma cell line and a colon adenocarcinoma cell line. Our results show that HDLs indeed elicited mild Akt activation in all the tested cellular models. PI3K is one of the main upstream proteins involved in Akt stimulation. In the three cellular models, LY294002, a PI3K inhibitor, only slightly blunted HDLs protection, indicating that HDLs induce PI3K-independent cell protection. Furthermore, genetic ablation or silencing of Akt did not abolish the protective effects of HDLs. This study demonstrates that the PI3K-Akt signaling pathway is not the main mediator of the cell protective functions of HDLs. Further investigation is therefore needed to identify the intrinsic mechanism of HDL-mediated cell protection.
Collapse
Affiliation(s)
- Adi Zheng
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Gilles Dubuis
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Jannick Pétremand
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Güliz Vanli
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland
| | - Christian Widmann
- Department of Physiology, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
10
|
Wong NKP, Nicholls SJ, Tan JTM, Bursill CA. The Role of High-Density Lipoproteins in Diabetes and Its Vascular Complications. Int J Mol Sci 2018; 19:E1680. [PMID: 29874886 PMCID: PMC6032203 DOI: 10.3390/ijms19061680] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Almost 600 million people are predicted to have diabetes mellitus (DM) by 2035. Diabetic patients suffer from increased rates of microvascular and macrovascular complications, associated with dyslipidaemia, impaired angiogenic responses to ischaemia, accelerated atherosclerosis, and inflammation. Despite recent treatment advances, many diabetic patients remain refractory to current approaches, highlighting the need for alternative agents. There is emerging evidence that high-density lipoproteins (HDL) are able to rescue diabetes-related vascular complications through diverse mechanisms. Such protective functions of HDL, however, can be rendered dysfunctional within the pathological milieu of DM, triggering the development of vascular complications. HDL-modifying therapies remain controversial as many have had limited benefits on cardiovascular risk, although more recent trials are showing promise. This review will discuss the latest data from epidemiological, clinical, and pre-clinical studies demonstrating various roles for HDL in diabetes and its vascular complications that have the potential to facilitate its successful translation.
Collapse
Affiliation(s)
- Nathan K P Wong
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| | - Stephen J Nicholls
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Joanne T M Tan
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| | - Christina A Bursill
- Immunobiology Research Group, The Heart Research Institute, 7 Eliza Street, Newtown, NSW 2042, Australia.
- Discipline of Medicine, The University of Sydney School of Medicine, Camperdown, NSW 2006, Australia.
- Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
- Adelaide Medical School, Faculty of Health & Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
11
|
Yang L, Wang J, Yang J, Schamber R, Hu N, Nair S, Xiong L, Ren J. Antioxidant metallothionein alleviates endoplasmic reticulum stress-induced myocardial apoptosis and contractile dysfunction. Free Radic Res 2016; 49:1187-98. [PMID: 25968954 DOI: 10.3109/10715762.2015.1013952] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIMS Endoplasmic reticulum (ER) stress exerts myocardial oxidative stress, apoptosis, and contractile anomalies, although the precise interplay between ER stress and apoptosis remains elusive. This study was designed to examine the impact of the cysteine-rich free radical scavenger metallothionein on ER stress-induced myocardial contractile defect and underlying mechanisms. METHODS AND RESULTS Wild-type friendly virus B and transgenic mice with cardiac-specific overexpression of metallothionein were challenged with the ER stress inducer tunicamycin (1 mg/kg, intraperitoneal, 48 h) prior to the assessment of myocardial function, oxidative stress, and apoptosis. Our results revealed that tunicamycin promoted cardiac remodeling (enlarged left ventricular end systolic/diastolic diameters with little changes in left ventricular wall thickness), suppressed fractional shortening and cardiomyocyte contractile function, elevated resting Ca(2+), decreased stimulated Ca(2+) release, prolonged intracellular Ca(2+) clearance, and downregulated sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, the effects of which were negated by metallothionein. Treatment with tunicamycin caused cardiomyocyte mitochondrial injury, as evidenced by decreased mitochondrial membrane potential (∆Ѱm, assessed by JC-1 staining), the effect of which was negated by the antioxidant. Moreover, tunicamycin challenge dramatically facilitated myocardial apoptosis as manifested by increased Bax, caspase 9, and caspase 12 protein levels, as well as elevated caspase 3 activity. Interestingly, metallothionein transgene significantly alleviated tunicamycin-induced myocardial apoptosis. CONCLUSION Taken together, our data favor a beneficial effect of metallothionein against ER stress-induced cardiac dysfunction possibly associated with attenuation of myocardial apoptosis.
Collapse
Affiliation(s)
- L Yang
- a Department of Anesthesiology , Xijing Hospital, the Fourth Military Medical University , Xi'an , P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res 2016; 57:1329-38. [PMID: 27146479 DOI: 10.1194/jlr.r067595] [Citation(s) in RCA: 450] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
The endoplasmic reticulum (ER) is a cellular organelle important for regulating calcium homeostasis, lipid metabolism, protein synthesis, and posttranslational modification and trafficking. Numerous environmental, physiological, and pathological insults disturb ER homeostasis, referred to as ER stress, in which a collection of conserved intracellular signaling pathways, termed the unfolded protein response (UPR), are activated to maintain ER function for cell survival. However, excessive and/or prolonged UPR activation leads to initiation of self-destruction through apoptosis. Excessive accumulation of lipids and their intermediate products causes metabolic abnormalities and cell death, called lipotoxicity, in peripheral organs, including the pancreatic islets, liver, muscle, and heart. Because accumulating evidence links chronic ER stress and defects in UPR signaling to lipotoxicity in peripheral tissues, understanding the role of ER stress in cell physiology is a topic under intense investigation. In this review, we highlight recent findings that link ER stress and UPR signaling to the pathogenesis of peripheral organs due to lipotoxicity.
Collapse
Affiliation(s)
- Jaeseok Han
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Choongchungnam-do, 31151, Republic of Korea
| | - Randal J Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307
| |
Collapse
|
13
|
Vollenweider P, von Eckardstein A, Widmann C. HDLs, diabetes, and metabolic syndrome. Handb Exp Pharmacol 2015; 224:405-21. [PMID: 25522996 DOI: 10.1007/978-3-319-09665-0_12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of type 2 diabetes mellitus and of the metabolic syndrome is rising worldwide and reaching epidemic proportions. These pathologies are associated with significant morbidity and mortality, in particular with an excess of cardiovascular deaths. Type 2 diabetes mellitus and the cluster of pathologies including insulin resistance, central obesity, high blood pressure, and hypertriglyceridemia that constitute the metabolic syndrome are associated with low levels of HDL cholesterol and the presence of dysfunctional HDLs. We here review the epidemiological evidence and the potential underlying mechanisms of this association. We first discuss the well-established association of type 2 diabetes mellitus and insulin resistance with alterations of lipid metabolism and how these alterations may lead to low levels of HDL cholesterol and the occurrence of dysfunctional HDLs. We then present and discuss the evidence showing that HDL modulates insulin sensitivity, insulin-independent glucose uptake, insulin secretion, and beta cell survival. A dysfunction in these actions could play a direct role in the pathogenesis of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Peter Vollenweider
- Department of Internal Medicine, University Hospital Center (CHUV) and University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Caveolin-1 regulates the anti-atherogenic properties of macrophages. Cell Tissue Res 2014; 358:821-31. [PMID: 25322709 DOI: 10.1007/s00441-014-2008-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/11/2014] [Indexed: 10/24/2022]
Abstract
Atherosclerosis is a complex disease initiated by the vascular accumulation of lipoproteins in the sub-endothelial space, followed by the infiltration of monocytes into the arterial intima. Caveolin-1 (Cav-1) plays an essential role in the regulation of cellular cholesterol metabolism and of various signaling pathways. In order to study specifically the role of macrophage Cav-1 in atherosclerosis, we used Cav-1 (-/-) Apoe (-/-) mice and transplanted them with bone marrow (BM) cells obtained from Cav-1 (+/+) Apoe (-/-) or Cav-1 (-/-) Apoe (-/-) mice and vice versa. We found that Cav-1 (+/+) mice harboring Cav-1 (-/-) BM-derived macrophages developed significantly larger lesions than Cav-1 (+/+) mice harboring Cav-1 (+/+) BM-derived macrophages. Cav-1 (-/-) macrophages were more susceptible to apoptosis and more prone to induce inflammation. The present study provides clear evidence that the absence of Cav-1 in macrophage is pro-atherogenic, whereas its absence in endothelial cells protects against atherosclerotic lesion formation. These findings demonstrate the cell-specific role of Cav-1 during the development of this disease.
Collapse
|
15
|
|