1
|
Mironov AA, Beznoussenko GV. The Regulated Secretion and Models of Intracellular Transport: The Goblet Cell as an Example. Int J Mol Sci 2023; 24:ijms24119560. [PMID: 37298509 DOI: 10.3390/ijms24119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Transport models are extremely important to map thousands of proteins and their interactions inside a cell. The transport pathways of luminal and at least initially soluble secretory proteins synthesized in the endoplasmic reticulum can be divided into two groups: the so-called constitutive secretory pathway and regulated secretion (RS) pathway, in which the RS proteins pass through the Golgi complex and are accumulated into storage/secretion granules (SGs). Their contents are released when stimuli trigger the fusion of SGs with the plasma membrane (PM). In specialized exocrine, endocrine, and nerve cells, the RS proteins pass through the baso-lateral plasmalemma. In polarized cells, the RS proteins secrete through the apical PM. This exocytosis of the RS proteins increases in response to external stimuli. Here, we analyze RS in goblet cells to try to understand the transport model that can be used for the explanation of the literature data related to the intracellular transport of their mucins.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
2
|
Yamamoto T, Hasegawa T, Hongo H, Amizuka N. Three-dimensional reconstruction of the Golgi apparatus in osteoclasts by a combination of NADPase cytochemistry and serial section scanning electron microscopy. Histochem Cell Biol 2021; 156:503-508. [PMID: 34436644 DOI: 10.1007/s00418-021-02024-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/28/2022]
Abstract
The three-dimensional morphology of the Golgi apparatus in osteoclasts was investigated by computer-aided reconstruction. Rat femora were treated for nicotinamide adenine dinucleotide phosphatase (NADPase) cytochemistry, and light microscopy was used to select several osteoclasts in serial semi-thin sections to investigate the Golgi apparatus by backscattered electron-mode scanning electron microscopy. Lace-like structures with strong backscattered electron signals were observed around the nuclei. These structures, observed within the Golgi apparatus, were attributed to the reaction products (i.e., lead precipitates) of NADPase cytochemistry. Features on the images corresponding to the Golgi apparatus, nuclei, and ruffled border were manually traced and three-dimensionally reconstructed using ImageJ/Fiji (an open-source image processing package). In the reconstructed model, the Golgi apparatus formed an almost-continuous structure with a basket-like configuration, which surrounded all the nuclei and also partitioned them. This peculiar three-dimensional morphology of the Golgi apparatus was discovered for the first time in this study. On the basis of the location of the cis- and trans-sides of the Golgi apparatus and the reported results of previous studies, we postulated that the nuclear membrane synthesized specific proteins in the osteoclasts and, accordingly, the Golgi apparatus accumulated around the nuclei as a receptacle.
Collapse
Affiliation(s)
- Tsuneyuki Yamamoto
- Department of Oral Functional Anatomy, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan.
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi 7, Kita-ku, Sapporo, 060-8586, Japan
| |
Collapse
|
3
|
Yamamoto T, Hasegawa T, Hongo H, Amizuka N. Three-dimensional morphology of the Golgi apparatus in osteoclasts: NADPase and arylsulfatase cytochemistry, and scanning electron microscopy using osmium maceration. Microscopy (Oxf) 2019; 68:243-253. [PMID: 30860257 DOI: 10.1093/jmicro/dfz003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/24/2018] [Accepted: 01/15/2019] [Indexed: 11/12/2022] Open
Abstract
This study was designed to observe osteoclasts in the rat femora by light and electron microscopic cytochemistry for nicotinamide adenine dinucleotide phosphatase (NADPase) and arylsulfatase, and scanning electron microscopy using osmium maceration to assess the three-dimensional morphology of the Golgi apparatus in osteoclasts. The Golgi apparatus showed strong NADPase activity and surrounded each nucleus with the cis-side facing the nucleus. The Golgi apparatus could be often traced for a length of 20 μm or longer. Observations of serial semi-thin sections confirmed that a single line of reaction products (=lead precipitates) intervened somewhere between any two neighboring nuclei. The nuclear membrane showed strong arylsulfatase activity as well as rough endoplasmic reticulum and lysosomes. Scanning electron microscopy showed that the Golgi apparatus covered the nucleus in a porous sheet-like configuration. Under magnification, the cis-most saccule showed a sieve-like configuration with fine fenestrations. The saccules decreased fenestration numbers toward the trans-side and displayed a more plate-like appearance. The above findings indicate the following. (1) The Golgi saccules of osteoclasts have a three-dimensional structure comparable with that generally seen in other cell types. (2) The Golgi apparatus forms a porous multi-spherical structure around nuclei. Within the structure, in most cases a Golgi stack partitions the room into several compartments in each of which a nucleus fits. (3) The nuclear membrane synthesizes some kinds of proteins more stably and sufficiently than the rough endoplasmic reticulum. Consequently, the Golgi apparatus accumulates around nuclei with the cis-side facing the nucleus.
Collapse
Affiliation(s)
- Tsuneyuki Yamamoto
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi7, Kita-ku, Sapporo, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi7, Kita-ku, Sapporo, Japan
| | - Hiromi Hongo
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi7, Kita-ku, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Hokkaido University Graduate School of Dental Medicine, Kita 13 Nishi7, Kita-ku, Sapporo, Japan
| |
Collapse
|
4
|
Nestorović N, Trifunović S, Manojlović-Stojanoski M, Jarić I, Ristić N, Filipović B, Šošić-Jurjević B, Milošević V. Soy Phytoestrogens Do Not Fully Reverse Changes in Rat Pituitary Castration Cells: Unbiased Stereological Study. Anat Rec (Hoboken) 2018; 301:1416-1425. [PMID: 29569839 DOI: 10.1002/ar.23809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
The aim of the study was to examine the potential of the principal soy isoflavones, genistein and daidzein, or isoflavone rich soy extract to recover pituitary castration cells in orchidectomized adult male rats in comparison with the effects of estradiol. Two weeks post orchidectomy (Orx), animals received estradiol-dipropionate, genistein, daidzein or soy extract subcutaneously for 3 weeks. Control sham-operated (So) and Orx rats received just the vehicle. Changes in the volumes of pars distalis, of individual follicle-stimulating hormone (FSH) and luteinizing hormone (LH) containing cells, their volume, numerical density and number were determined by unbiased design-based stereology. The intracellular content of βFSH and βLH was estimated by relative intensity of fluorescence (RIF). Orchidectomy increased all examined stereological parameters and RIF. Compared to Orx, estradiol increased the volume of pars distalis, but reversed RIF and all morphometric parameters of gonadotropes to the level of So rats, except their number. Treatments with purified isoflavones and soy extract decreased RIF to the control So level, expressing an estradiol-like effect. However, the histological appearance and morphometrical features of gonadotropes did not follow this pattern. Genistein increased the volume of pars distalis, decreased the volume density of LH-labeled cells and raised the number of gonadotropes. Daidzein decreased the cell volume of gonadotropic cells but increased their number and numerical density. Soy extract induced an increase in number and numerical density of FSH-containing cells. Therefore, it can be concluded that soy phytoestrogens do not fully reverse the Orx-induced changes in pituitary castration cells. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nataša Nestorović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Svetlana Trifunović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Ivana Jarić
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Nataša Ristić
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Branko Filipović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Verica Milošević
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| |
Collapse
|
5
|
Pandey K, Mizukami Y, Watanabe K, Sakaguti S, Kadokawa H. Deep sequencing of the transcriptome in the anterior pituitary of heifers before and after ovulation. J Vet Med Sci 2017; 79:1003-1012. [PMID: 28442638 PMCID: PMC5487774 DOI: 10.1292/jvms.16-0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We aimed to determine gene expression patterns in the anterior pituitary (AP) of heifers
before and after ovulation via deep sequencing of the transcriptome (RNA-seq) to identify
new genes and clarify important pathways. Heifers were slaughtered on the estrus day
(pre-ovulation; n=5) or 3 days after ovulation (post-ovulation; n=5) for AP collection. We
randomly selected 4 pre-ovulation and 4 post-ovulation APs, and the ribosomal RNA-depleted
poly (A)+RNA were prepared to assemble next-generation sequencing libraries. The bovine
APs expressed 12,769 annotated genes at pre- or post-ovulation. The sum of the reads per
kilobase of exon model per million mapped reads (RPKM) values of all transcriptomes were
599,676 ± 38,913 and 668,209 ± 23,690, and 32.2 ± 2.6% and 44.0 ± 4.4% of these
corresponded to the AP hormones in the APs of pre- and post-ovulation heifers,
respectively. The bovine AP showed differential expression of 396 genes
(P<0.05) in the pre- and post-ovulation APs. The 396 genes included
two G-protein-coupled receptor (GPCR) genes (GPR61 and
GPR153) and those encoding 13 binding proteins. The AP also expressed
259 receptor and other 364 binding proteins. Moreover, ingenuity pathway analysis for the
396 genes revealed (P=2.4 × 10−3) a canonical pathway linking
GPCR to cytoskeleton reorganization, actin polymerization, microtubule growth, and gene
expression. Thus, the present study clarified the novel genes found to be differentially
expressed before and after ovulation and clarified an important pathway in the AP.
Collapse
Affiliation(s)
- Kiran Pandey
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| | - Yoichi Mizukami
- Center for Gene Research, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Kenji Watanabe
- Center for Gene Research, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Syuiti Sakaguti
- Institute of Radioisotope Research and Education, Yamaguchi University, Minami Kogushi 1-1-1, Ube-shi, Yamaguchi 755-8505, Japan
| | - Hiroya Kadokawa
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi-shi, Yamaguchi 753-8515, Japan
| |
Collapse
|
6
|
KOGA D, KUSUMI S, USHIKI T, WATANABE T. Integrative method for three-dimensional imaging of the entire Golgi apparatus by combining thiamine pyrophosphatase cytochemistry and array tomography using backscattered electron-mode scanning electron microscopy . Biomed Res 2017; 38:285-296. [DOI: 10.2220/biomedres.38.285] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Daisuke KOGA
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University
| | - Satoshi KUSUMI
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Tatsuo USHIKI
- Division of Microscopic Anatomy and Bio-imaging, Niigata University Graduate School of Medical and Dental Sciences
| | - Tsuyoshi WATANABE
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University
| |
Collapse
|
7
|
Nakakura T, Nemoto T, Suzuki T, Asano-Hoshino A, Tanaka H, Arisawa K, Nishijima Y, Kiuchi Y, Hagiwara H. Adrenalectomy facilitates ATAT1 expression and α-tubulin acetylation in ACTH-producing corticotrophs. Cell Tissue Res 2016; 366:363-370. [DOI: 10.1007/s00441-016-2441-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/28/2016] [Indexed: 12/26/2022]
|
8
|
Koga D, Kusumi S, Ushiki T. Three-dimensional shape of the Golgi apparatus in different cell types: serial section scanning electron microscopy of the osmium-impregnated Golgi apparatus. Microscopy (Oxf) 2015; 65:145-57. [DOI: 10.1093/jmicro/dfv360] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 10/21/2015] [Indexed: 11/13/2022] Open
|
9
|
Jaarsma D, Hoogenraad CC. Cytoplasmic dynein and its regulatory proteins in Golgi pathology in nervous system disorders. Front Neurosci 2015; 9:397. [PMID: 26578860 PMCID: PMC4620150 DOI: 10.3389/fnins.2015.00397] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 12/15/2022] Open
Abstract
The Golgi apparatus is a dynamic organelle involved in processing and sorting of lipids and proteins. In neurons, the Golgi apparatus is important for the development of axons and dendrites and maintenance of their highly complex polarized morphology. The motor protein complex cytoplasmic dynein has an important role in Golgi apparatus positioning and function. Together, with dynactin and other regulatory factors it drives microtubule minus-end directed motility of Golgi membranes. Inhibition of dynein results in fragmentation and dispersion of the Golgi ribbon in the neuronal cell body, resembling the Golgi abnormalities observed in some neurodegenerative disorders, in particular motor neuron diseases. Mutations in dynein and its regulatory factors, including the dynactin subunit p150Glued, BICD2 and Lis-1, are associated with several human nervous system disorders, including cortical malformation and motor neuropathy. Here we review the role of dynein and its regulatory factors in Golgi function and positioning, and the potential role of dynein malfunction in causing Golgi apparatus abnormalities in nervous system disorders.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC Rotterdam, Netherlands
| | | |
Collapse
|