1
|
Krishnan RH, Sadu L, Akshaya RL, Gomathi K, Saranya I, Das UR, Satishkumar S, Selvamurugan N. Circ_CUX1/miR-130b-5p/p300 axis for parathyroid hormone-stimulation of Runx2 activity in rat osteoblasts: A combined bioinformatic and experimental approach. Int J Biol Macromol 2023; 225:1152-1163. [PMID: 36427609 DOI: 10.1016/j.ijbiomac.2022.11.176] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/31/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Parathyroid hormone (PTH) regulates the expression of bone remodeling genes by enhancing the activity of Runx2 in osteoblasts. p300, a histone acetyltransferase, acetylated Runx2 to activate the expression of its target genes. PTH stimulated the expression of p300 in rat osteoblastic cells. Increasing studies suggested the potential of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and circular RNAs (circRNAs), in regulating gene expression under both physiological and pathological conditions. In this study, we hypothesized that PTH regulates Runx2 activity via ncRNAs-mediated p300 expression in rat osteoblastic cells. Bioinformatics and experimental approaches identified PTH-upregulation of miR-130b-5p and circ_CUX1 that putatively target p300 and miR-130b-5p, respectively. An antisense-mediated knockdown of circ_CUX1 was performed to determine the sponging activity of circ_CUX1. Knockdown of circ_CUX1 promoted miR-130b-5p activity and reduced p300 expression, resulting in decreased Runx2 acetylation in rat osteoblastic cells. Further, bioinformatics analysis identified the possible signaling pathways that regulate Runx2 activity and osteoblast differentiation via circ_CUX1/miR-130b-5p/p300 axis. The predicted circ_CUX1/miR-130b-5p/p300 axis might pave the way for better diagnostic and therapeutic approaches for bone-related diseases.
Collapse
Affiliation(s)
- R Hari Krishnan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Lakshana Sadu
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - K Gomathi
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - I Saranya
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
2
|
Zhao SL, Wen ZX, Mo XY, Zhang XY, Li HN, Cheung WH, Fu D, Zhang SH, Wan Y, Chen BL. Bone-Metabolism-Related Serum microRNAs to Diagnose Osteoporosis in Middle-Aged and Elderly Women. Diagnostics (Basel) 2022; 12:2872. [PMID: 36428932 PMCID: PMC9689310 DOI: 10.3390/diagnostics12112872] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Objective: Postmenopausal osteoporosis (PMOP), a chronic systemic metabolic disease prevalent in middle-aged and elderly women, heavily relies on bone mineral density (BMD) measurement as the diagnostic indicator. In this study, we investigated serum microRNAs (miRNAs) as a possible screening tool for PMOP. Methods: This investigation recruited 83 eligible participants from 795 community-dwelling postmenopausal women between June 2020 and August 2021. The miRNA expression profiles in the serum of PMOP patients were evaluated via miRNA microarray (six PMOP patients and four postmenopausal women without osteoporosis (n-PMOP) as controls). Subsequently, results were verified in independent sample sets (47 PMOP patients and 26 n-PMOP controls) using quantitative real-time PCR. In addition, the target genes and main functions of the differentially expressed miRNAs were explored by bioinformatics analysis. Results: Four highly expressed miRNAs in the serum of patients (hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p) showed acceptable disease-independent discrimination performance (area under the curve range: 0.747-0.902) in the training set and verification set, outperforming traditional bone turnover markers. Among four key miRNAs, hsa-miR-144-5p is the only one that can simultaneously predict changes in BMD in lumbar spine 1-4, total hip, and femoral neck (β = -0.265, p = 0.022; β = -0.301, p = 0.005; and β = -0.324, p = 0.003, respectively). Bioinformatics analysis suggested that the differentially expressed miRNAs were targeted mainly to YY1, VIM, and YWHAE genes, which are extensively involved in bone metabolism processes. Conclusions: Bone-metabolism-related serum miRNAs, such as hsa-miR-144-5p, hsa-miR-506-3p, hsa-miR-8068, and hsa-miR-6851-3p, can be used as novel biomarkers for PMOP diagnosis independent of radiological findings and traditional bone turnover markers. Further study of these miRNAs and their target genes may provide new insights into the epigenetic regulatory mechanisms of the onset and progression of the disease.
Collapse
Affiliation(s)
- Sheng-Li Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Zhen-Xing Wen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Xiao-Yi Mo
- Department of Orthopaedics, Guangzhou First People’s Hospital, Guangzhou 510180, China
| | - Xiao-Yan Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hao-Nan Li
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Wing-Hoi Cheung
- Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Dan Fu
- Department of Orthopedics, Kiang Wu Hospital, Macau SAR 999078, China
| | - Shi-Hong Zhang
- Department of Laboratry Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| | - Bai-Ling Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Guangzhou 510080, China
| |
Collapse
|
3
|
Cyclophilin A Promotes Osteoblast Differentiation by Regulating Runx2. Int J Mol Sci 2022; 23:ijms23169244. [PMID: 36012517 PMCID: PMC9409320 DOI: 10.3390/ijms23169244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclophilin A (CypA) is a ubiquitously expressed and highly conserved protein with peptidyl-prolyl cis-trans isomerase activity that is involved in various biological activities by regulating protein folding and trafficking. Although CypA has been reported to positively regulate osteoblast differentiation, the mechanistic details remain largely unknown. In this study, we aimed to elucidate the mechanism of CypA-mediated regulation of osteoblast differentiation. Overexpression of CypA promoted osteoblast differentiation in bone morphogenic protein 4 (BMP4)-treated C2C12 cells, while knockdown of CypA inhibited osteoblast differentiation in BMP4-treated C2C12. CypA and Runx2 were shown to interact based on immunoprecipitation experiments and CypA increased Runx2 transcriptional activity in a dose-dependent manner. Our results indicate that this may be because CypA can increase the DNA binding affinity of Runx2 to Runx2 binding sites such as osteoblast-specific cis-acting element 2. Furthermore, to identify factors upstream of CypA in the regulation of osteoblast differentiation, various kinase inhibitors known to affect osteoblast differentiation were applied during osteogenesis. Akt inhibition resulted in the most significant suppression of osteogenesis in BMP4-induced C2C12 cells overexpressing CypA. Taken together, our results show that CypA positively regulates osteoblast differentiation by increasing the DNA binding affinity of Runx2, and Akt signaling is upstream of CypA.
Collapse
|
4
|
YY2 Promotes Osteoblast Differentiation by Upregulating Osterix Transcriptional Activity. Int J Mol Sci 2022; 23:ijms23084303. [PMID: 35457117 PMCID: PMC9025685 DOI: 10.3390/ijms23084303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/19/2022] Open
Abstract
Yin Yang 2 (YY2) is a paralog of YY1, a well-known multifunctional transcription factor containing a C-terminal zinc finger domain. Although the role of YY1 in various biological processes, such as the cell cycle, cell differentiation and tissue development, is well established, the function of YY2 has not been fully determined. In this study, we investigated the functional role of YY2 during osteoblast differentiation. YY2 overexpression and knockdown increased and decreased osteoblast differentiation, respectively, in BMP4-induced C2C12 cells. Mechanistically, YY2 overexpression increased the mRNA and protein levels of Osterix (Osx), whereas YY2 knockdown had the opposite effect. To investigate whether YY2 regulates Osx transcription, the effect of YY2 overexpression and knockdown on Osx promoter activity was evaluated. YY2 overexpression significantly increased Osx promoter activity in a dose-dependent manner, whereas YY2 knockdown had the opposite effect. Furthermore, vectors containing deletion and point mutations were constructed to specify the regulation site. Both the Y1 and Y2 sites were responsible for YY2-mediated Osx promoter activation. These results indicate that YY2 is a positive regulator of osteoblast differentiation that functions by upregulating the promoter activity of Osx, a representative osteogenic transcription factor in C2C12 cells.
Collapse
|
5
|
Knockdown of Yin Yang 1 enhances anticancer effects of cisplatin through protein phosphatase 2A-mediated T308 dephosphorylation of AKT. Cell Death Dis 2018; 9:747. [PMID: 29970878 PMCID: PMC6030060 DOI: 10.1038/s41419-018-0774-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/23/2018] [Accepted: 05/28/2018] [Indexed: 11/16/2022]
Abstract
Cisplatin is still one of the first-line drugs for chemotherapy of head and neck squamous cell carcinoma (HNSCC) and shows a survival advantage for HNSCC. However, a substantial proportion of HNSCC eventually becomes resistance to cisplatin and the underlying mechanisms remain to be fully understood. Yin Yang 1 (YY1) is a multifunctional protein regulating both gene transcription and protein modifications and also plays a role in chemotherapy resistance. Here, we reported that knockdown of YY1 by lentivirus-mediated short hairpin RNA or tetracycline-inducible short hairpin RNA enhanced cisplatin-induced apoptosis and inhibition of cell proliferation, migration and invasion in the HNSCC cell lines, and inhibition of the xenograft tumor growth. The underlying mechanisms were revealed that knockdown of YY1 downregulated both S473 and T308 phosphorylation of AKT (protein kinase B), which was mainly responsible for cisplatin resistance, whereas overexpression of YY1 upregulated both S473 and T308 phosphorylation. Cisplatin upregulated YY1 mRNA and protein expression and both S473 and T308 phosphorylation of AKT. In the presence of cisplatin, knockdown of YY1 not only blocked cisplatin-induced increase in S473 and T308 phosphorylation of AKT, but still downregulated T308 phosphorylation. Moreover, protein phosphatase 2A (PP2A) antagonist, okadaic acid, upregulated T308, but not S473, phosphorylation, and simultaneously abolished YY1 knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. In addition, knockdown of YY1 promoted PP2A activity through upregulating mRNA and protein expressions of PP2A catalytic subunit alpha (PPP2CA) through the binding of YY1 in the promoter of PPP2CA. Conversely, activating PP2A by forskolin also promoted YY1 degradation and subsequently inhibited T308 phosphorylation. These results suggested that knockdown of YY1 enhanced anticancer effects of cisplatin through PP2A mediating T308 dephosphorylation of AKT, and that targeting YY1 or PP2A would enhance the efficiency of cisplatin chemotherapy in treatment of HNSCC.
Collapse
|
6
|
Abstract
Ying Yang 1 (YY1) is a ubiquitously expressed transcription factor shown to be essential for pro-B-cell development. However, the role of YY1 in other B-cell populations has never been investigated. Recent bioinformatics analysis data have implicated YY1 in the germinal center (GC) B-cell transcriptional program. In accord with this prediction, we demonstrated that deletion of YY1 by Cγ1-Cre completely prevented differentiation of GC B cells and plasma cells. To determine if YY1 was also required for the differentiation of other B-cell populations, we deleted YY1 with CD19-Cre and found that all peripheral B-cell subsets, including B1 B cells, require YY1 for their differentiation. Transitional 1 (T1) B cells were the most dependent upon YY1, being sensitive to even a half-dosage of YY1 and also to short-term YY1 deletion by tamoxifen-induced Cre. We show that YY1 exerts its effects, in part, by promoting B-cell survival and proliferation. ChIP-sequencing shows that YY1 predominantly binds to promoters, and pathway analysis of the genes that bind YY1 show enrichment in ribosomal functions, mitochondrial functions such as bioenergetics, and functions related to transcription such as mRNA splicing. By RNA-sequencing analysis of differentially expressed genes, we demonstrated that YY1 normally activates genes involved in mitochondrial bioenergetics, whereas it normally down-regulates genes involved in transcription, mRNA splicing, NF-κB signaling pathways, the AP-1 transcription factor network, chromatin remodeling, cytokine signaling pathways, cell adhesion, and cell proliferation. Our results show the crucial role that YY1 plays in regulating broad general processes throughout all stages of B-cell differentiation.
Collapse
|
7
|
Zheng X, Cheng M, Xiang L, Su J, Zhou Y, Xie L, Zhang R. Cloning and identification of a YY-1 homolog as a potential transcription factor from Pinctada fucata. Gene 2015; 572:108-115. [PMID: 26151893 DOI: 10.1016/j.gene.2015.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/22/2015] [Accepted: 07/01/2015] [Indexed: 01/02/2023]
Abstract
Biomineralization is an important and ubiquitous process in organisms. The shell formation of mollusks is a typical biomineral physical activity and is used as a canonical model in biomineralization research. Most recent studies focused on the identification of matrix proteins involved in shell formation; however, little is known about their transcriptional regulation mechanism, especially the transcription factors involved in shell formation. In this study, we identified a homolog of the YY-1 transcriptional factor from Pinctada fucata, named Pf-YY-1, and characterized its expression pattern and biological functions. Pf-YY-1 has a typical zinc finger motif highly similar to those in humans, mice, and other higher organisms, which indicated its DNA-binding capability and its function as a transcription factor. Pf-YY-1 is ubiquitously expressed in many tissues, but at a higher level in the mantle, which suggested a role in biomineralization. The expression pattern of Pf-YY-1 during pearl sac development was quite similar to, and was synchronized with, those of Prisilkin-39, ACCBP, and other genes involved in biomineralization, which also suggested its function in biomineralization.
Collapse
Affiliation(s)
- Xiangnan Zheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Minzhang Cheng
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Xiang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jingtan Su
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yujuan Zhou
- Chinese National Human Genome Center, Beijing 100084, China
| | - Liping Xie
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Rongqing Zhang
- Institute of Marine Biotechnology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Protein Science Laboratory of the Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Han Y, Choi YH, Lee SH, Jin YH, Cheong H, Lee KY. Yin Yang 1 is a multi-functional regulator of adipocyte differentiation in 3T3-L1 cells. Mol Cell Endocrinol 2015; 413:217-27. [PMID: 26159900 DOI: 10.1016/j.mce.2015.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 06/21/2015] [Accepted: 06/29/2015] [Indexed: 01/03/2023]
Abstract
Yin Yang 1 (YY1) is an ubiquitously distributed transcription factor that belongs to the GLI-Kruppel class of zinc finger proteins. The mechanism by which YY1 regulates adipocyte differentiation remains unclear. In this study, we investigated the functional role of YY1 during adipocyte differentiation. During the early stage, YY1 gene and protein expression was transiently downregulated upon the induction of differentiation, however, it was consistently induced during the later stage. YY1 overexpression decreased adipocyte differentiation and blocked cell differentiation at the preadipocyte stage, while YY1 knockdown by RNA interference increased adipocyte differentiation. YY1 physically interacted with PPARγ (Peroxisome proliferator-activated receptor gamma) and C/EBPβ (CCAAT/enhancer-binding protein beta) respectively in 3T3-L1 cells. Through its interaction with PPARγ, YY1 directly decreased PPARγ transcriptional activity. YY1 ectopic expression prevented C/EBPβ from binding to the PPARγ promoter, resulting in the downregulation of PPARγ transcriptional activity. These results indicate that YY1 repressed adipocyte differentiation by repressing the activity of adipogenic transcriptional factors in 3T3-L1 cells.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - You Hee Choi
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Sung Ho Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Yun-Hye Jin
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769, South Korea.
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, South Korea.
| |
Collapse
|