1
|
Moutal A, White KA, Chefdeville A, Laufmann RN, Vitiello PF, Feinstein D, Weimer JM, Khanna R. Dysregulation of CRMP2 Post-Translational Modifications Drive Its Pathological Functions. Mol Neurobiol 2019; 56:6736-6755. [PMID: 30915713 PMCID: PMC6728212 DOI: 10.1007/s12035-019-1568-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/15/2019] [Indexed: 12/13/2022]
Abstract
Collapsin response mediator proteins (CRMPs) are a family of ubiquitously expressed, homologous phosphoproteins best known for coordinating cytoskeletal formation and regulating cellular division, migration, polarity, and synaptic connection. CRMP2, the most studied of the five family members, is best known for its affinity for tubulin heterodimers and function in regulating the microtubule network. These functions are tightly regulated by post-translational modifications including phosphorylation, SUMOylation, oxidation, and O-GlcNAcylation. While CRMP2's physiological functions rely mostly on its non-phosphorylated state, dysregulation of CRMP2 phosphorylation and SUMOylation has been reported to be involved in the pathophysiology of multiple diseases including cancer, chronic pain, spinal cord injury, neurofibromatosis type 1, and others. Here, we provide a consolidated update on what is known about CRMP2 signaling and function, first focusing on axonal growth and neuronal polarity, then illustrating the link between dysregulated CRMP2 post-translational modifications and diseases. We additionally discuss the roles of CRMP2 in non-neuronal cells, both in the CNS and regions of the periphery. Finally, we offer thoughts on the therapeutic implications of modulating CRMP2 function in a variety of diseases.
Collapse
Affiliation(s)
- Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
| | - Rachel N Laufmann
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA
| | - Peter F Vitiello
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Douglas Feinstein
- Department of Veterans Affairs, Jesse Brown VA Medical Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Jill M Weimer
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, 1501 North Campbell Drive, P.O. Box 245050, Tucson, AZ, 85724, USA.
- Pediatrics and Rare Diseases Group, Sanford Research, 2301 E 60th St N, Sioux Falls, SD, 57104, USA.
- Department of Anesthesiology, University of Arizona, Tucson, AZ, USA.
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, AZ, USA.
| |
Collapse
|
2
|
Bollard J, Patte C, Radkova K, Massoma P, Chardon L, Valantin J, Gadot N, Goddard I, Vercherat C, Hervieu V, Gouysse G, Poncet G, Scoazec JY, Walter T, Roche C. Neuropilin-2 contributes to tumor progression in preclinical models of small intestinal neuroendocrine tumors. J Pathol 2019; 249:343-355. [PMID: 31257576 DOI: 10.1002/path.5321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained. This study aimed at deciphering the potential role of NRP-2 as a contributor to SI-NET progression. The role of NRP-2 in SI-NET progression was addressed using an approach integrating human tissue and serum samples, cell lines and in vivo models. Data obtained from human SI-NET tissues showed that membranous NRP-2 expression is present in a majority of tumors, and is correlated with invasion, metastatic abilities, and neovascularization. In addition, NRP-2 soluble isoform was found elevated in serum samples from metastatic patients. In preclinical mouse models of NET progression, NRP-2 silencing led to a sustained antitumor effect, partly driven by the downregulation of VEGFR2. In contrast, its ectopic expression conferred a gain of aggressiveness, driven by the activation of various oncogenic signaling pathways. Lastly, NRP-2 inhibition led to a decrease of tumor cell viability, and sensitized to therapeutic agents. Overall, our results point out NRP-2 as a potential therapeutic target for SI-NETs, and will foster the development of innovative strategies targeting this receptor. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Julien Bollard
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Céline Patte
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Kristina Radkova
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Patrick Massoma
- INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Laurence Chardon
- Department of Biology and Hormonology, Lyon-Est Hospital, Bron, France
| | - Julie Valantin
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Isabelle Goddard
- Laboratoire des Modèles Tumoraux, Lyon Synergie Cancer, Lyon, France
| | - Cécile Vercherat
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Valérie Hervieu
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Pathology, Lyon-Est Hospital, Bron, France
| | | | - Gilles Poncet
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Thomas Walter
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Colette Roche
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
3
|
Wang Y, Deng W, Zhang Y, Sun S, Zhao S, Chen Y, Zhao X, Liu L, Du J. MICAL2 promotes breast cancer cell migration by maintaining epidermal growth factor receptor (EGFR) stability and EGFR/P38 signalling activation. Acta Physiol (Oxf) 2018; 222. [PMID: 28719045 DOI: 10.1111/apha.12920] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/08/2017] [Accepted: 07/10/2017] [Indexed: 01/08/2023]
Abstract
AIM MICAL2, a cytoskeleton dynamics regulator, is identified associated with survival and metastasis of several types of cancers recently. This study was designed to investigate the role of MICAL2 in breast cancer cell migration as well as its underlying mechanisms. METHODS The relationship between MICAL2 and EGF/EGFR signalling was analysed by gene overexpression and knock-down techniques. Cell migration was measured by wound-healing assays. Activation of EGF/EGFR signalling pathways were evaluated by immunofluorescence, qPCR, Western blotting and zymography techniques. Rac1 activity was assessed by pull-down assay. Correlation of MICAL2 and EGFR in breast cancer specimens was examined by immunohistochemical analysis. RESULTS Ectopic expression of MICAL2 in MCF-7 cells augmented EGFR protein level, accompanied by the promotion of cell migration. Silencing MICAL2 in MDA-MB-231 cells destabilized EGFR and inhibited cell migration. In mechanism, the maintaining effect of MICAL2 on EGFR protein content was due to a delay in EGFR degradation. Expression of MICAL2 was also shown positively correlated with the activation of P38/HSP27 and P38/MMP9 signallings, which are the main downstream signalling cascades of EGF/EGFR involved in cell migration. Further analysis indicated that Rac1 activation contributed to the maintaining effect of MICAL2 on EGFR stability. In addition, analysis of breast cancer specimens revealed a positive correlation between MICAL2 and EGFR levels and an association between MICAL2 expression and worse prognosis. CONCLUSION MICAL2 is a major regulator of breast cancer cell migration, maintaining EGFR stability and subsequent EGFR/P38 signalling activation through inhibiting EGFR degradation in a Rac1-dependent manner.
Collapse
Affiliation(s)
- Y Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - W Deng
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - S Sun
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - S Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Y Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - X Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - L Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - J Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Wilking-Busch MJ, Ndiaye MA, Liu X, Ahmad N. RNA interference-mediated knockdown of SIRT1 and/or SIRT2 in melanoma: Identification of downstream targets by large-scale proteomics analysis. J Proteomics 2017; 170:99-109. [PMID: 28882678 DOI: 10.1016/j.jprot.2017.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/14/2017] [Accepted: 09/03/2017] [Indexed: 02/07/2023]
Abstract
Melanoma is the most notorious and fatal of all skin cancers and the existing treatment options have not been proven to effectively manage this neoplasm, especially the metastatic disease. Sirtuin (SIRT) proteins have been shown to be differentially expressed in melanoma. We have shown that SIRTs 1 and 2 were overexpressed in melanoma and inhibition of SIRT1 imparts anti-proliferative responses in human melanoma cells. To elucidate the impact of SIRT 1 and/or 2 in melanoma, we created stable knockdowns of SIRTs 1, 2, and their combination using shRNA mediated RNA interference in A375 human melanoma cells. We found that SIRT1 and SIRT1&2 combination knockdown caused a decreased cellular proliferation in melanoma cells. Further, the knockdown of SIRT 1 and/or 2 resulted in a decreased colony formation in melanoma cells. To explore the downstream targets of SIRTs 1 and/or 2, we employed a label-free quantitative nano-LC-MS/MS proteomics analysis using the stable lines. We found aberrant levels of proteins involved in many vital cellular processes, including cytoskeletal organization, ribosomal activity, oxidative stress response, and angiogenesis. These findings provide clear evidence of cellular systems undergoing alterations in response to sirtuin inhibition, and have unveiled several excellent candidates for future study. SIGNIFICANCE Melanoma is the deadliest form of skin cancer, due to its aggressive nature, metastatic potential, and a lack of sufficient treatment options for advanced disease. Therefore, detailed investigations into the molecular mechanisms of melanoma growth and progression are needed. In the search for candidate genes to serve as therapeutic targets, the sirtuins show promise as they have been found to be upregulated in melanoma and they regulate a large number of proteins involved in cellular processes known to affect tumor growth, such as DNA damage repair, cell cycle arrest, and apoptosis. In this study, we used a large-scale label-free comparative proteomics system to identify novel protein targets that are affected following knockdown of SIRT1 and/or 2 in A375 metastatic melanoma cell line. Our study offers important insight into the potential downstream targets of SIRTs 1 and/or 2. This may unravel new potential areas of exploration in melanoma research.
Collapse
Affiliation(s)
- Melissa J Wilking-Busch
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Mary A Ndiaye
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, 175 S. University Street, West Lafayette, IN, USA
| | - Nihal Ahmad
- Department of Dermatology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA; William S. Middleton VA Medical Center, 2500 Overlook Terrace, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Translational research in neuroendocrine tumors: pitfalls and opportunities. Oncogene 2017; 36:1899-1907. [PMID: 27641330 DOI: 10.1038/onc.2016.316] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 12/16/2022]
Abstract
Interest in research on neuroendocrine tumors (NETs) has grown in the past 10 years, coinciding with improvements in our understanding of the molecular pathogenesis of NETs. In addition, NETs have become one of the most exciting settings for drug development. Two targeted agents for the management of advanced pancreatic NETs have been approved, but the development of targeted agents for NETs is limited by problems with both patient selection and demonstration of activity. In this review, we analyze these limitations and discuss ways to increase the predictive value of preclinical models for target discovery and drug development. The role of translational research and 'omics' methodologies is emphasized, with the final aim of developing personalized medicine. Because NETs usually grow slowly and metastatic tumors are found at easily accessible locations, and owing to improvements in techniques for liquid biopsies, NETs provide a unique opportunity to obtain tumor samples at all stages of the evolution of the disease and to adapt treatment to changes in tumor biology. Combining clinical and translational research is essential to achieve progress in the NET field. Slow growth and genetic stability limit and challenge both the availability and further development of preclinical models of NETs, one of the most crucial unmet research needs in the field. Finally, we suggest some useful approaches for improving clinical drug development for NETs: moving from classical RECIST-based response end points to survival parameters; searching for different criteria to define response rates (for example, antiangiogenic effects and metabolic responses); implementing randomized phase II studies to avoid single-arm phase II studies that produce limited data on drug efficacy; and using predictive biomarkers for patient selection.
Collapse
|