1
|
Huang J, Li J, Li X, Guo H, Chen S. Identification of FZD7 as a potential ferroptosis-related diagnostic gene in endometriosis by bioinformatics analysis. Sci Rep 2025; 15:7172. [PMID: 40021920 PMCID: PMC11871347 DOI: 10.1038/s41598-025-90803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
An increasing number of research have suggested that ferroptosis plays an important role in endometriosis (EMS). This study was to identify a ferroptosis-related diagnosis gene in EMS by using bioinformatics. R Bioconductor package limma was used to analyzed the differentially expressed genes (DEGs) between the EMS groups and control groups. CIBERSORT was used to analyze the differences between the EMS group and control group of 22 immune cells. Quantitative real-time PCR (RT-qPCR) and Western blot (WB) were used to validate the expression level of FZD7 in tissue samples. The study found that FZD7 was upregulated and showed good diagnostic value in five EMS transcriptome databases. RT-qPCR and WB experiments also verified that FZD7 was upregulated in EMS. Moreover, we found that macrophages, especially M2 macrophages, were significantly infiltrated in EMS. FZD7 was positively correlated with M2 macrophage infiltration, and was up-regulated in the endometrial stromal cells co-cultured with macrophages. The study identified an ferroptosis repressor gene, FZD7, validated in five EMS transcriptome datasets, which is significantly up-regulated in ectopic lesions of EMS and is a potential target for the treatment of EMS.
Collapse
Affiliation(s)
- Jianyun Huang
- Department of Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinbo Li
- Department of Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiao Li
- Department of Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongling Guo
- Department of Gynecology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Shuqin Chen
- Department of Gynecology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Shao X, Li C, Liang J, Changzhong L. Metformin enhances epithelial cell growth inhibition via the protein kinase-insulin-like growth factor binding protein-1 pathway. J OBSTET GYNAECOL 2024; 44:2321651. [PMID: 38466134 DOI: 10.1080/01443615.2024.2321651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Abnormal stromal-epithelial cell communication is a pathogenic mechanism in endometriosis, and metformin can modulate it. Insulin-like growth factor binding protein-1 (IGFBP1) plays a role in endometriosis, but the exact mechanism is unknown. IGFBP1 is reportedly a downstream target of metformin in some diseases. We aimed to investigate the role of IGFBP1 in endometriosis development, whether it is associated with abnormal communication, and whether metformin affects IGFBP1 expression. METHODS Patients who underwent surgical treatment for endometriosis or other diseases were enrolled. Ten patients with ovarian-type endometriosis and eight patients each who underwent surgical treatment for other lesions with or without endometriosis were selected, and their tissues taken for cell proliferation, western blotting, polymerase chain reaction, and knockdown experiments. RESULTS Ectopic and eutopic stromal cells (EcSCs and EuSCs) lost their ability to inhibit epithelial cell proliferation, and IGFBP1 expression was downregulated in both groups of stromal cells compared to that in normal stromal cells (NSCs; 1.09 vs. 0.25, p = .0002 1.09 vs. 0.57, p = .0029). In an EcSC IGFBP1 overexpression model, the ability of EcSCs to inhibit epithelial cell proliferation was enhanced (EdU positivity decreased from 38% to 25%, p = .0001). Furthermore, adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation was downregulated in EcSCs and EuSCs compared to that in NSCs (0.99 vs. 0.42, p = .0006/0.99 vs. 0.57, p = 0.0032). Treatment of EcSCs with metformin increased AMPK phosphorylation (0.47 vs. 1.04, p = .0107) while upregulating IGFBP1 expression (0.69 vs. 1.01, p = .0164), whereas pre-treatment with an AMPK phosphorylation inhibitor abrogated metformin-induced IGFBP1 upregulation. CONCLUSIONS IGFBP1 mediates aberrant stromal-epithelial communication in endometriosis. Metformin can upregulate IGFBP1 expression in EcSCs by activating AMPK, and upregulated IGFBP1 enhances the inhibition of epithelial cell proliferation. IGFBP1 is expected to be a therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Xuping Shao
- Department of Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changling Li
- Department of Obstetrics and Gynecology Outpatient Clinic, the People's Hospital of Pingyi County, Linyi, Shandong, China
| | - Junhui Liang
- Department of Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li Changzhong
- Department of Gynaecology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Obstetrics and Gynecology, Shenzhen Hospital, Peking University, Shenzhen, Guangdong, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
3
|
Zhang Y, Wu L, Wen X, Lv X. Identification and validation of risk score model based on gene set activity as a diagnostic biomarker for endometriosis. Heliyon 2023; 9:e18277. [PMID: 37539146 PMCID: PMC10395533 DOI: 10.1016/j.heliyon.2023.e18277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023] Open
Abstract
Objective The enigmatic nature of Endometriosis (EMS) pathogenesis necessitates investigating alterations in signaling pathway activity to enhance our comprehension of the disease's characteristics. Methods Three published gene expression profiles (GSE11691, GSE25628, and GSE7305 datasets) were downloaded, and the "combat" algorithm was employed for batch correction, gene expression difference analysis, and pathway enrichment difference analysis. The protein-protein interaction (PPI) network was constructed to identify core genes, and the relative enrichment degree of gene sets was evaluated. The Lasso regression model identified candidate gene sets with diagnostic value, and a risk scoring diagnostic model was constructed for further validation on the GSE86534 and GSE5108 datasets. CIBERSORT was used to assess the composition of immune cells in EMS, and the correlation between EMS diagnostic value gene sets and immune cells was evaluated. Results A total of 568 differentially expressed genes were identified between eutopic and ectopic endometrium, with 10 core genes in the PPI network associated with cell cycle regulation. Inflammation-related pathways, including cytokine-receptor signaling and chemokine signaling pathways, were significantly more active in ectopic endometrium compared to eutopic endometrium. Diagnostic gene sets for EMS, such as homologous recombination, base excision repair, DNA replication, P53 signaling pathway, adherens junction, and SNARE interactions in vesicular transport, were identified. The risk score's area under the curve (AUC) was 0.854, as indicated by the receiver operating characteristic (ROC) curve, and the risk score's diagnostic value was validated by the validation cohort. Immune cell infiltration analysis revealed correlations between the risk score and Macrophages M2, Plasma cells, resting NK cells, activated NK cells, and regulatory T cells. Conclusion The risk scoring diagnostic model, based on pathway activity, demonstrates high diagnostic value and offers novel insights and strategies for the clinical diagnosis and treatment of Endometriosis.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Gynecology, Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha 410005, China
| | - Lulu Wu
- Department of Integrated Traditional Chinese and Western Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xiang Wen
- Department of Pathology, The First People's Hospital of Huizhou City, Huizhou 516000, China
| | - Xiuwei Lv
- Department of Traditional Chinese Medicine, Rocket Force Medical Center of PLA, Beijing 100088, China
| |
Collapse
|
4
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Hartner G, Husslein H, Kuessel L, Gstoettner M, Tiringer D, Wenzl R, Perricos A. The latest advances in the pharmacological management of endometriosis. Expert Opin Pharmacother 2023; 24:121-133. [PMID: 35232316 DOI: 10.1080/14656566.2022.2045274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Endometriosis is a benign disease, characterized by a wide range of symptoms and different degrees of severity, which is why therapy should be individually adapted to the patient's needs. Over the years, a lot of research has gone into finding new therapeutic approaches for this enigmatic disease. AREAS COVERED This review presents the latest advances in pharmacological management of endometriosis and is solely focused on studies published from 2010 to 2021. EXPERT OPINION Clinicians and researchers are constantly searching for new therapeutic strategies for endometriosis patients. As there are well-established treatments, however, any new medication should fulfill at least one of the three criteria: increased efficacy, comparable efficacy but a better safety profile, or treatments that have a lack of accompanying contraceptive effects that are seen in most endometriosis treatments. While some new substances show promising results, further studies are needed to demonstrate the fulfillment of one of the above-mentioned criteria.
Collapse
Affiliation(s)
- Gabriel Hartner
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - Heinrich Husslein
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - Lorenz Kuessel
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - Manuela Gstoettner
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - Denise Tiringer
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - René Wenzl
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| | - Alexandra Perricos
- Department of Obstetrics and Gynecology, Medical University of Vienna Vienna Austria
| |
Collapse
|
6
|
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24:233-249. [PMID: 35067780 PMCID: PMC9402773 DOI: 10.1007/s12017-021-08700-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/30/2021] [Indexed: 10/25/2022]
Abstract
The wingless-related integration site (Wnt) signaling pathway plays an essential role in embryonic development and nervous system regulation. It is critically involved in multiple types of neuropathic pain (NP), such as HIV-related NP, cancer pain, diabetic neuralgia, multiple sclerosis-related NP, endometriosis pain, and other painful diseases. Wnt signaling is also implicated in the pain induced by sciatic nerve compression injury and selective spinal nerve ligation. Thus, the Wnt signaling pathway may be a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Yiting Tang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Yupeng Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
- Beijing University of Chinese Medicine, Beijing North Third Ring Road No. 11, Chaoyang District, Beijing, 100029, China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beixiange 5, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
7
|
Cheng J, Li C, Ying Y, Lv J, Qu X, McGowan E, Lin Y, Zhu X. Metformin Alleviates Endometriosis and Potentiates Endometrial Receptivity via Decreasing VEGF and MMP9 and Increasing Leukemia Inhibitor Factor and HOXA10. Front Pharmacol 2022; 13:750208. [PMID: 35273494 PMCID: PMC8902464 DOI: 10.3389/fphar.2022.750208] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Endometriosis affects endometrial receptivity, a key factor for successful embryo implantation. Metformin treatment is associated with alleviating the symptoms of endometriosis; however the mechanism of metformin action is unclear. Neoangiogenesis plays an important role in the development and recurrence of endometriosis. In addition, the leukemia inhibitor factor (LIF) and HOXA10 genes are also distinguishing markers of endometriosis (decrease) and endometrial receptivity (increase). This study investigated the therapeutic potentials of metformin and the underlying mechanism using an in vivo rat endometriosis model. Methods: Female Wistar albino mature rats with experimentally induced endometriosis were used in this study. Metformin was administered at doses of 100 mg/kg/d and 200 mg/kg/d. The volume of endometriotic implants was assessed. The protein and mRNA expression of the vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), the endometrial receptivity markers, LIF and HOXA10, were measured in the endometrium of rats with endometriosis. Results: Metformin treatment significantly suppressed the growth of endometriotic implants. Further, the expression of VEGF and MMP-9 protein and mRNA in endometriotic implants were significantly reduced. Metformin also significantly upregulated LIF and HOXA10 expression in endometrium from rats with endometriosis. The inhibitory effect of metformin on the growth of endometriotic implants, VEGF and MMP-9, and upregulating effect on LIF and HOXA10, was optimal at a dose of 100 mg/kg/d. Conclusion: Our in vivo data demonstrates that metformin treatment alleviates endometriosis and potentiates endometrial receptivity. The underlying mechanisms are associated with decreased expression of VEGF and MMP-9 genes and upregulation of the LIF and HOXA10 genes. The effect of metformin was optimal at 100 mg/kg/d. These findings provide a potential alternative for women with endometriosis with the potential to increase fertility. Metformin is an approved drug by FDA for diabetes and this study may add another potential clinical use for metformin.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Chunyang Li
- Department of Biochemistry, School of Basic Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingfen Ying
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jieqiang Lv
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianqin Qu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Eileen McGowan
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Xueqiong Zhu
- Department of Obstetrics and Gynaecology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Huang X, Xiao L, Long Y, Pei T, Luo B, Liao T, Li Y, Zhu H, Ouyang Y, Huang W. Comparative Proteomic Analysis Reveals Metformin Improves the Expression of Biomarkers of Endometrial Receptivity in Infertile Women with Minimal/Mild Endometriosis. Reprod Sci 2022; 29:2593-2606. [PMID: 35088363 DOI: 10.1007/s43032-022-00869-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
The prevalence of endometriosis is approximately 10% in women of reproductive age, and 30-50% of women with endometriosis are infertile. Metformin has been reported to inhibit the growth of ectopic lesions in endometriosis. However, its effect on the eutopic endometrium of endometriosis is unknown. This study aimed to identify whether metformin affects endometrial receptivity in infertile women with minimal/mild endometriosis. We enrolled 10 infertile women who were diagnosed with minimal/mild endometriosis through laparoscopy. Paired endometrial tissues of the secretory phase from participants were collected during surgery and after 2 months of metformin treatment (n = 5) or no medical treatment (n = 5). Protein expression profiles of the paired endometrium were detected by proteomics and compared using the self-control method (2 months later vs. in surgery). Proteomics data revealed six proteins associated with endometrial receptivity among the significantly upregulated proteins after metformin treatment (fold change > 1.5, P < 0.05). Insulin-like growth factor binding protein 7 (IGFBP-7) showed the most robust increase in these six endometrial receptivity-related proteins (fold change: 8.668, P < 0.05), while there was no significant change in the controls (fold change: 1.906, P > 0.05). The upregulation of IGFBP-7 has been validated through target proteomics, immunohistochemistry, and further demonstrated in endometriosis mouse models induced by autotransplantation. This study revealed that metformin upregulated the expression of IGFBP-7 in the endometrium of human and mouse models of endometriosis. Metformin potentially affects endometrial receptivity of minimal/mild endometriosis by improving the expression of the endometrial receptivity marker IGFBP-7.
Collapse
Affiliation(s)
- Xin Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China.,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China
| | - Li Xiao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Ying Long
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Tianjiao Pei
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Bin Luo
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Tianji Liao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Yujing Li
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China.,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China
| | - Huili Zhu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Yunwei Ouyang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China
| | - Wei Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu Sichuan, 610041, China. .,Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu Sichuan, 610041, China. .,NHC Key Laboratory of Chronobiology, Sichuan University), Chengdu Sichuan, 610041, China.
| |
Collapse
|
9
|
Metformin as a Potential Treatment Option for Endometriosis. Cancers (Basel) 2022; 14:cancers14030577. [PMID: 35158846 PMCID: PMC8833654 DOI: 10.3390/cancers14030577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023] Open
Abstract
Endometriosis is a common disease in women of reproductive age, and its pathogenesis seems to be largely affected by hormone imbalance, inflammation, oxidative stress, and autophagy dysregulation. These pathophysiological disturbances interact with one another through mechanisms that are still awaiting elucidation. The aim of this article is to present current knowledge regarding the possibilities of using metformin in the pharmacological treatment of endometriosis. Metformin is an insulin sensitizer widely used for the treatment of type 2 diabetes mellitus. The pleiotropic effects of metformin are mainly exerted through the activation of AMP-activated protein kinase, which is the key cellular energy homeostasis regulator that inhibits mTOR, a major autophagy suppressor. Metformin regresses endometriotic implants by increasing the activity of superoxide dismutase. It is also an inhibitor of metalloproteinase-2, decreasing the levels of the vascular endothelial growth factor and matrix metalloproteinase-9 in animal studies. In endometriosis, metformin might modify the stroma-epithelium communication via Wnt2/β-catenin. With its unique therapeutic mechanisms and no serious side effects, metformin seems to be a helpful anti-inflammatory and anti-proliferative agent in the treatment of endometriosis. It could be a missing link for the successful treatment of this chronic disease.
Collapse
|
10
|
Huang Q, Liu X, Guo SW. Changing prostaglandin E2 (PGE 2) signaling during lesional progression and exacerbation of endometriosis by inhibition of PGE 2 receptor EP2 and EP4. Reprod Med Biol 2021; 21:e12426. [PMID: 34938150 PMCID: PMC8660993 DOI: 10.1002/rmb2.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/20/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
Purpose We investigated the change, if any, in prostaglandin E2 (PGE2) signaling in endometriotic lesions of different developmental stages in mouse. In addition, we evaluated the effect of treatment of mice with induced deep endometriosis (DE) with inhibitors of PGE2 receptor subtypes EP2 and EP4 and metformin. Methods Three mouse experimentations were conducted. In Experiment 1, female Balb/C mice were induced with endometriosis or DE and were serially sacrificed after induction. Experiments 2 and 3 evaluated the effect of treatment with EP2 and EP4 inhibitors and metformin, respectively, in mice with induced DE. Immunohistochemistry analysis of COX-2, EP2, and EP4, along with the extent of lesional fibrosis, was evaluated. Results The immunostaining of COX-2, EP2, and EP4 turned from activation to a stall as lesions progressed. Treatment with EP2/EP4 inhibitors in DE mice exacerbated endometriosis-associated hyperalgesia and promoted fibrogenesis in lesions even though it suppressed the PGE2 signaling dose-dependently. In contrast, treatment with metformin resulted in increased PGE2 signaling, concomitant with improved hyperalgesia, and retarded lesional fibrogenesis. Conclusions The PGE2 signaling diminishes as endometriotic lesions progress. Treatment with EP2/EP4 inhibitors in DE mice exacerbates endometriosis, but metformin appears to be promising seemingly through the induction of the PGE2 signaling.
Collapse
Affiliation(s)
- Qingqing Huang
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xishi Liu
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| | - Sun-Wei Guo
- Shanghai OB/GYN Hospital Fudan University Shanghai China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases Fudan University Shanghai China
| |
Collapse
|
11
|
Ayoubi JM. Editorial: Current Innovations in Non-invasive Diagnoses and/or Surgical Treatments of Endometriosis. Front Surg 2021; 8:699051. [PMID: 34901135 PMCID: PMC8654927 DOI: 10.3389/fsurg.2021.699051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022] Open
|
12
|
Hung SW, Zhang R, Tan Z, Chung JPW, Zhang T, Wang CC. Pharmaceuticals targeting signaling pathways of endometriosis as potential new medical treatment: A review. Med Res Rev 2021; 41:2489-2564. [PMID: 33948974 PMCID: PMC8252000 DOI: 10.1002/med.21802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/23/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Endometriosis (EM) is defined as endometrial tissues found outside the uterus. Growth and development of endometriotic cells in ectopic sites can be promoted via multiple pathways, including MAPK/MEK/ERK, PI3K/Akt/mTOR, NF-κB, Rho/ROCK, reactive oxidative stress, tumor necrosis factor, transforming growth factor-β, Wnt/β-catenin, vascular endothelial growth factor, estrogen, and cytokines. The underlying pathophysiological mechanisms include proliferation, apoptosis, autophagy, migration, invasion, fibrosis, angiogenesis, oxidative stress, inflammation, and immune escape. Current medical treatments for EM are mainly hormonal and symptomatic, and thus the development of new, effective, and safe pharmaceuticals targeting specific molecular and signaling pathways is needed. Here, we systematically reviewed the literature focused on pharmaceuticals that specifically target the molecular and signaling pathways involved in the pathophysiology of EM. Potential drug targets, their upstream and downstream molecules with key aberrant signaling, and the regulatory mechanisms promoting the growth and development of endometriotic cells and tissues were discussed. Hormonal pharmaceuticals, including melatonin, exerts proapoptotic via regulating matrix metallopeptidase activity while nonhormonal pharmaceutical sorafenib exerts antiproliferative effect via MAPK/ERK pathway and antiangiogenesis activity via VEGF/VEGFR pathway. N-acetyl cysteine, curcumin, and ginsenoside exert antioxidant and anti-inflammatory effects via radical scavenging activity. Natural products have high efficacy with minimal side effects; for example, resveratrol and epigallocatechin gallate have multiple targets and provide synergistic efficacy to resolve the complexity of the pathophysiology of EM, showing promising efficacy in treating EM. Although new medical treatments are currently being developed, more detailed pharmacological studies and large sample size clinical trials are needed to confirm the efficacy and safety of these treatments in the near future.
Collapse
Affiliation(s)
- Sze Wan Hung
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Ruizhe Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and GeneticsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou
| | - Zhouyurong Tan
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | | | - Tao Zhang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and GynaecologyThe Chinese University of Hong KongHong Kong
- Reproduction and Development, Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong Kong
- School of Biomedical SciencesThe Chinese University of Hong KongHong Kong
- Chinese University of Hong Kong‐Sichuan University Joint Laboratory in Reproductive MedicineThe Chinese University of Hong KongHong Kong
| |
Collapse
|
13
|
Stochino-Loi E, Major AL, Gillon TER, Ayoubi JM, Feki A, Bouquet de Joliniere J. Metformin, the Rise of a New Medical Therapy for Endometriosis? A Systematic Review of the Literature. Front Med (Lausanne) 2021; 8:581311. [PMID: 34046415 PMCID: PMC8144644 DOI: 10.3389/fmed.2021.581311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Medical treatments for endometriosis aim to control pain symptoms and stop progression of endometriotic lesions. However, their adverse effects and their contraceptive effect in women who desire pregnancy, limit their long terms use. Although there is only one study investigating the effects of metformin on women with endometriosis, metformin seems to have a unique therapeutic potential. It may be a helpful anti-inflammatory and antiproliferative agent in the treatment of endometriosis. As such metformin may be more beneficial thanks to the lack of serious side effects.
Collapse
Affiliation(s)
- Emanuela Stochino-Loi
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Attila L Major
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland.,Femina Gynecology Center, Geneva, Switzerland
| | - Tessa E R Gillon
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marc Ayoubi
- Department of Obstetrics and Gynecology, Foch Hospital, University of West Paris, Suresnes, France
| | - Anis Feki
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean Bouquet de Joliniere
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
14
|
Liu F, Li Z, Guo J, Fang S, Zhou J, Cao B, Liu J, Yi Y, Yuan X, Xu X, Huang O, Wang L, Zou Y. Endometrial stromal cell proteomic analysis reveals LIM and SH3 protein 1 (LASP1) plays important roles in the progression of adenomyosis. Mol Hum Reprod 2021; 27:6129094. [PMID: 33543750 DOI: 10.1093/molehr/gaab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/12/2021] [Indexed: 11/14/2022] Open
Abstract
Adenomyosis is one of the most common gynecological disorders that the molecular events underlying its pathogenesis remain not fully understood. Prior studies have shown that endometrial stromal cells (ESCs) played crucial roles in the pathogenesis of adenomyosis. In this study, we utilized two-dimensional gel electrophoresis combined with protein identification by mass spectrometry (2D/MS) proteomics analysis to compare the differential protein expression profile between the paired eutopic and ectopic ESCs (EuESCs and EcESCs) in adenomyosis, and a total of 32 significantly altered protein spots were identified. Among which, the expression of LIM and SH3 protein 1 (LASP1) was increased significantly in EcESCs compared to EuESCs. Immunohistochemical assay showed that LASP1 was overexpressed in the stromal cells of ectopic endometriums compared to eutopic endometriums; further functional analyses revealed that LASP1 overexpression could enhance cell proliferation, migration and invasion of EcESCs. Furthermore, we also showed that the dysregulated expression of LASP1 in EcESCs was associated with DNA hypermethylation in the promoter region of the LASP1 gene. However, the detailed molecular mechanisms of enhancing cell proliferation, invasion and migration caused by upregulated LASP1 in adenomyosis needs further study. For the first time, our data suggested that LASP1 plays important roles in the pathogenesis of adenomyosis, and could serve as a prognostic biomarker of adenomyosis.
Collapse
Affiliation(s)
- Faying Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zengming Li
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jiubai Guo
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Shufen Fang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jiangyan Zhou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bianna Cao
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Jun Liu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yulan Yi
- Department of Gynecology, Huangshi Central Hospital, Huangshi, Hubei, China
| | - Xiaoqun Yuan
- Department of Gynecology, Jiujiang Maternal and Child Health Hospital, Jiujiang, Jiangxi, China
| | - Xiaoyun Xu
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ouping Huang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Gynecology, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Liqun Wang
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Department of Reproductive Health, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yang Zou
- Key Laboratory of Women's Reproductive Health of Jiangxi Province, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China.,Central Laboratory, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Ganieva U, Nakamura T, Osuka S, Bayasula, Nakanishi N, Kasahara Y, Takasaki N, Muraoka A, Hayashi S, Nagai T, Murase T, Goto M, Iwase A, Kikkawa F. Involvement of Transcription Factor 21 in the Pathogenesis of Fibrosis in Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:145-157. [DOI: 10.1016/j.ajpath.2019.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022]
|
16
|
Xiu DH, Liu GF, Yu SN, Li LY, Zhao GQ, Liu L, Li XF. Long non-coding RNA LINC00968 attenuates drug resistance of breast cancer cells through inhibiting the Wnt2/β-catenin signaling pathway by regulating WNT2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:94. [PMID: 30791958 PMCID: PMC6385430 DOI: 10.1186/s13046-019-1100-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/11/2019] [Indexed: 01/17/2023]
Abstract
Background Breast cancer is one the most common cancers, making it the second leading cause of cancer-related death among women. Long non-coding RNAs (lncRNAs), with tightly regulated expression patterns, also serve as tumor suppressor during tumorigenesis. The present study aimed to elucidate the role of LINC00968 in breast cancer via WNT2-mediated Wnt2/β-catenin signaling pathway. Methods Breast cancer chip GSE26910 was utilized to identify differential expression in LINC00968 and WNT2. The possible relationship among LINC00968, transcriptional repressor HEY and WNT2 was analyzed and then verified. Effects of LINC00968 on activation of the Wnt2/β-catenin signaling pathway was also tested. Drug resistance, colony formation, cell migration, invasion ability and cell apoptosis after transfection were also determined. Furthermore, tumor xenograft in nude mice was performed to test tumor growth and weight in vivo. Results WNT2 expression exhibited at a high level, whereas LINC00968 at a low expression in breast cancer which was also associated with poor prognosis in patients. LINC00968 targeted and negatively regulated WNT2 potentially via HEY1. Either overexpressed LINC00968 or silenced inhibited activation of the Wnt2/β-catenin signaling pathway, thereby reducing drug resistance, decreasing colony formation ability, as well as suppressing migration and invasion abilities of breast cancer cells in addition to inducing apoptosis. Lastly, in vivo experiment suggested that LINC00968 overexpression also suppressed transplanted tumor growth in nude mice. Conclusion Collectively, overexpressed LINC00968 contributes to reduced drug resistance in breast cancer cells by inhibiting the activation of the Wnt2/β-catenin signaling pathway through silencing WNT2. This study offers a new target for the development of breast cancer treatment.
Collapse
Affiliation(s)
- Dian-Hui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Gui-Feng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Shao-Nan Yu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Long-Yun Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China
| | - Lin Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, People's Republic of China
| | - Xue-Feng Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, Jilin Province, People's Republic of China.
| |
Collapse
|
17
|
Park SY, Kim D, Kee SH. Metformin-activated AMPK regulates β-catenin to reduce cell proliferation in colon carcinoma RKO cells. Oncol Lett 2019; 17:2695-2702. [PMID: 30854043 PMCID: PMC6365932 DOI: 10.3892/ol.2019.9892] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022] Open
Abstract
Metformin can suppress cell proliferation and viability by altering mitochondrial energy metabolism and by the activation of 5′-adenosine monophosphate-activated protein kinase (AMPK). The current study demonstrated that metformin-induced suppression of cell proliferation is further potentiated by AMPK-mediated suppression of β-catenin-dependent wingless-type (Wnt) signaling. Treatment with metformin reduced mitochondrial oxidative phosphorylation and glycolysis, leading to an energy imbalance that may induce AMPK phosphorylation in RKO cells. Metformin treatment also decreased β-catenin expression in the cytoplasm and nucleus. Active AMPK was revealed to be associated with β-catenin. The decrease in β-catenin expression was inhibited by proteosome inhibition through phosphorylation of β-catenin at serine 33/37. Given that nuclear translocation-associated phosphorylation of β-catenin at serine was maintained, the association of β-catenin with AMPK may sequester β-catenin in the cytoplasm and lead to proteosomal degradation. Furthermore, metformin-induced suppression of cell proliferation was partially recovered by AMPK inhibition, while metformin inhibited Wnt-mediated cell proliferation and β-catenin expression. The present results suggest that AMPK activation can suppress β-catenin-dependent Wnt signaling by cytoplasmic sequestering of β-catenin through AMPK, which further decreases cell proliferation in addition to metformin-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Song Yi Park
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Dasarang Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Sun-Ho Kee
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| |
Collapse
|
18
|
Yang YM, Yang WX. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget 2018; 8:41679-41689. [PMID: 28415639 PMCID: PMC5522315 DOI: 10.18632/oncotarget.16472] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/11/2017] [Indexed: 12/15/2022] Open
Abstract
Endometriosis, an estrogen-dependent chronic gynecological disease, is common in reproductive-age women and profoundly affects their life quality. Although various pathogenic theories have been proposed, the origin of endometriosis remains unclear. Epithelial to mesenchymal transition (EMT) is a process that epithelial cells lose polarized organization of the cytoskeleton and cell-to-cell contacts, acquiring the high motility of mesenchymal cells. These changes are thought to be prerequisites for the original establishment of endometriotic lesions. However, no study exactly indicates which type of EMT occurs in endometriosis. In this review, we conclude that two different types of EMT may participate in this disease. Besides, two stimulating signals, hypoxia and estrogen, can through different pathways to activate the EMT process in endometriosis. Those pathways involve many cellular factors such as TGF-beta and Wnt, ultimately leading to cell proliferation and migration. As infertility is becoming a serious and intractable issue for women, EMT, during the implantation process, is gaining attention. In this review, we will describe the known functions of EMT in endometriosis, and suggest further studies that may aid in the development of medical therapy.
Collapse
Affiliation(s)
- Yan-Meng Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
Oestrogen–progesterone signalling is highly versatile and critical for the maintenance of healthy endometrium in humans. The genomic and nongenomic signalling cascades initiated by these hormones in differentiated cells of endometrium have been the primary focus of research since 1920s. However, last decade of research has shown a significant role of stem cells in the maintenance of a healthy endometrium and the modulatory effects of hormones on these cells. Endometriosis, the growth of endometrium outside the uterus, is very common in infertile patients and the elusiveness in understanding of disease pathology causes hindrance in selection of treatment approaches to enhance fertility. In endometriosis, the stem cells are dysfunctional as it can confer progesterone resistance to their progenies resulting in disharmony of hormonal orchestration of endometrial homeostasis. The bidirectional communication between stem cell signalling pathways and oestrogen–progesterone signalling is found to be disrupted in endometriosis though it is not clear which precedes the other. In this paper, we review the intricate connection between hormones, stem cells and the cross-talks in their signalling cascades in normal endometrium and discuss how this is deregulated in endometriosis. Re-examination of the oestrogen–progesterone dependency of endometrium with a focus on stem cells is imperative to delineate infertility associated with endometriosis and thereby aid in designing better treatment modalities.
Collapse
|
20
|
Abdel-Rasheed M, Nour Eldeen G, Mahmoud M, ElHefnawi M, Abu-Shahba N, Reda M, Elsetohy K, Nabil M, Elnoury A, Taha T, Azmy O. MicroRNA expression analysis in endometriotic serum treated mesenchymal stem cells. EXCLI JOURNAL 2017; 16:852-867. [PMID: 28828000 PMCID: PMC5547388 DOI: 10.17179/excli2017-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/01/2017] [Indexed: 01/14/2023]
Abstract
Endometriosis is defined by presence of endometrial-like-tissue outside the uterus. Recently, ectopic endometriotic lesions have been suggested to originate by abnormal differentiation of endometrial mesenchymal stem cells (eMSCs). MicroRNAs (miRNAs) play an important role in the pathophysiology of endometriosis. Through a PCR array approach, we aimed to assess the differential expression of microRNAs in human eMSC treated in culture with sera derived from women with severe endometriosis. Sera were collected from five patients with severe endometriosis and three control women and added individually in the culture medium to conduct experimental and control eMSC sets, respectively. Regular microscopic follow-up for cell morphology was performed. SYBR Green based real-time PCR array was used to assess the expression of 84 miRNAs. Bioinformatics analysis was done to predict the target genes of the significantly dysregulated miRNAs and their enriched biological processes and pathways. Thirty-two miRNAs were found significantly dysregulated in experimental cultures. Functional enrichment analysis revealed several endometriosis associated biological processes and pathways were enriched by target genes of these miRNAs. In conclusion, treatment of human eMSCs with sera of severe endometriosis cases affects the expression of certain miRNAs and their target genes. This may result in altering cell functions and consequently, endometriosis development.
Collapse
Affiliation(s)
- Mazen Abdel-Rasheed
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ghada Nour Eldeen
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Molecular Genetics and Enzymology, National Research Centre, Cairo, Egypt
| | - Marwa Mahmoud
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mahmoud ElHefnawi
- Biomedical Informatics and Chemo-informatics group, Informatics and Systems Department, National Research Centre, Cairo, Egypt
| | - Nourhan Abu-Shahba
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
- Department of Medical Molecular Genetics, National Research Centre, Cairo, Egypt
| | - Mohamed Reda
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Khaled Elsetohy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Michael Nabil
- Department of Molecular Genetics, CliniLab, Cairo, Egypt
| | - Amr Elnoury
- Department of Medical Applications of Laser, National Institute of Laser Enhanced Sciences, Cairo University, Cairo, Egypt
| | - Tamer Taha
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Osama Azmy
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
- Stem Cell Research group, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|