1
|
Watanabe N. A narrative review of long-term inorganic iodine monotherapy for Graves' disease with a historical relationship between iodine and thyroid. Endocr J 2025; 72:23-36. [PMID: 39231686 PMCID: PMC11778387 DOI: 10.1507/endocrj.ej24-0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Almost a century has passed since Plummer reported the efficacy of short-term preoperative inorganic iodine therapy for Graves' disease in the 1920s. Since there were concerns about the escape phenomenon and exacerbation with inorganic iodine, antithyroid drugs became the mainstay of pharmacotherapy for Graves' disease following their development in the 1940s. With regard to long-term inorganic iodine monotherapy, Trousseau reported a case in the 1860s, and several subsequent reports suggested its efficacy. Around 1930, Thompson et al. published a number of papers and concluded that long-term inorganic iodine monotherapy was useful if limited to mild cases under careful follow-up. From Japan, in 1970, Nagataki et al. reported that, of 12 patients treated with inorganic iodine, three remained eumetabolic for more than two years. Since 2014, some reports have also been published from Japan. A summary of these recent reports is given below. The starting dose of potassium iodide is around 50 mg/day, and candidate responders have mild disease, with FT4 <2.76 ng/dL (35.5 pmol/L), a small goiter, and are female and elderly. Response rates are relatively high, at 60-80%, and the remission rate is about 40%. In cases of insufficient response, changing therapy should be considered. Inorganic iodine can be used as a possible alternative if the patient experiences adverse events with antithyroid drugs and/or prefers conservative treatments, with an understanding of their efficacy and limitations. These recent reports have been published from Japan, where iodine is sufficient, and the dose of inorganic iodine is empirical and requires further study.
Collapse
Affiliation(s)
- Natsuko Watanabe
- Department of Internal Medicine, Ito Hospital, Tokyo 150-8308, Japan
| |
Collapse
|
2
|
Oglio R, Rodriguez C, Salvarredi L, Rossich L, Perona M, Dagrosa A, Juvenal G, Thomasz L. Selenium bioavailability modulates the sensitivity of thyroid cells to iodide excess. Chem Biol Interact 2024; 387:110810. [PMID: 38013145 DOI: 10.1016/j.cbi.2023.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
INTRODUCTION Iodide is an essential micronutrient for the synthesis of thyroid hormones and its imbalance is involved in the origin of different thyroid pathological processes. Selenium (Se) is another essential trace element that contributes to thyroid preservation through the control of the redox homeostasis. Different studies have demonstrated that sodium-iodide-symporter (NIS) is downregulated in the presence of iodide excess and Se supplementation reverses this effect. We also demonstrated that NOX4-derived ROS are involved in NIS repression induced by iodide excess. The aim of this study was to investigate how Se bioavailability is decisive in the sensitivity to iodide excess on a differentiated rat thyroid cell line (FRTL-5). RESULTS We demonstrated that siRNA-mediated silencing of Nox4 suppressed AKT phosphorylation induced by iodide excess. Iodide increases TGF-β1 mRNA expression, AKT phosphorylation, ROS levels and decreases GPX1 and TXRND1 mRNAs expression while Se reversed these effects. Furthermore, iodide induced Nrf2 transcriptional activity only in Se-supplemented cultures, suggesting that Se positively influences Nrf2 activation and selenoenzyme response in FRTL-5. Se, also inhibited NF-κB phosphorylation induced by iodide excess. In addition, we found that iodide excess decreased total phosphatase activity and PTP1B and PTEN mRNA expression. Se supply restored only PTEN mRNA expression. Finally, we studied the 2-α-iodohexadecanal (2-IHD) effects since it has been proposed as intermediary of iodide action on thyroid autoregulation. 2-IHD stimulated PI3K/AKT activity and reduced NIS expression by a ROS-independent mechanism. Also, we found that 2-IHD increased TGF-β1 mRNA and TGF-β inhibitor (SB431542) reverses the 2-IHD inhibitory effect on NIS mRNA expression, suggesting that TGF-β1 signaling pathway could be involved. Although Se reduced 2-IHD-induced TGFB1 levels, it could not reverse its inhibitory effect on NIS expression. CONCLUSION Our study suggests that Se bioavailability may improve the expression of antioxidant genes through the activation of Nrf2, interfere in PI3K/AKT signaling and NIS expression by redox modulation.
Collapse
Affiliation(s)
- Romina Oglio
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Carla Rodriguez
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Leonardo Salvarredi
- FUESMEN, Mendoza, Argentina; Balseiro Institute, National University of Cuyo, Mendoza, Argentina
| | - Luciano Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina
| | - Marina Perona
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Alejandra Dagrosa
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Guillermo Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Yu J, Shen S, Yan Y, Liu L, Luo R, Liu S, Wu Y, Li Y, Jiang J, Ying H. Iodide Excess Inhibits Thyroid Hormone Synthesis Pathway Involving XBP1-Mediated Regulation. Nutrients 2023; 15:nu15040887. [PMID: 36839245 PMCID: PMC9967305 DOI: 10.3390/nu15040887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Iodine is an essential micronutrient for producing thyroid hormone (TH); however, iodide excess can lead to adverse thyroidal effects. Unfortunately, the lack of a proper in vitro model system hampered the studies of the effect of iodide excess on thyroid physiology and pathology. Here, we demonstrated that excessive iodide intake downregulated the genes related to TH synthesis in the thyroids of mice. Since sodium iodide has no effect on these genes in cultured cell lines, we developed a three-dimensional (3D) culture system to enable the murine thyrocytes to form organoids in vitro with thyroid follicle-like structures and function and found that the in vivo effect of iodide excess could be mimicked in these thyroid organoids. Our data indicate that iodide excess mainly activated the XBP1-mediated unfolded protein response in both murine thyroid and thyroid organoids, while activation of XBP1 was able to mimic the sodium iodide effect on genes for the synthesis of TH in murine thyroid organoids. Lastly, our results suggest that XBP1 might transcriptionally repress the genes involved in the synthesis of TH. Based on these findings, we propose that iodide excess inhibits the transcription of genes related to TH synthesis through a mechanism involving XBP1-mediated action.
Collapse
Affiliation(s)
- Jing Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200025, China
| | - Siyi Shen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200025, China
| | - Ying Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Lingxiao Liu
- Department of Interventional Radiology, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shengnan Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yuting Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yuying Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200025, China
- Correspondence: (Y.L.); (J.J.); (H.Y.)
| | - Jingjing Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (Y.L.); (J.J.); (H.Y.)
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai 200025, China
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, China
- Correspondence: (Y.L.); (J.J.); (H.Y.)
| |
Collapse
|
4
|
Karbownik-Lewińska M, Stępniak J, Iwan P, Lewiński A. Iodine as a potential endocrine disruptor-a role of oxidative stress. Endocrine 2022; 78:219-240. [PMID: 35726078 PMCID: PMC9584999 DOI: 10.1007/s12020-022-03107-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/02/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Iodine is an essential micronutrient required for thyroid hormone biosynthesis. However, overtreatment with iodine can unfavorably affect thyroid physiology. The aim of this review is to present the evidence that iodine-when in excess-can interfere with thyroid hormone synthesis and, therefore, can act as a potential endocrine-disrupting chemical (EDC), and that this action, as well as other abnormalities in the thyroid, occurs-at least partially-via oxidative stress. METHODS We reviewed published studies on iodine as a potential EDC, with particular emphasis on the phenomenon of oxidative stress. RESULTS This paper summarizes current knowledge on iodine excess in the context of its properties as an EDC and its effects on oxidative processes. CONCLUSION Iodine does fulfill the criteria of an EDC because it is an exogenous chemical that interferes-when in excess-with thyroid hormone synthesis. However, this statement cannot change general rules regarding iodine supply, which means that iodine deficiency should be still eliminated worldwide and, at the same time, iodine excess should be avoided. Universal awareness that iodine is a potential EDC would make consumers more careful regarding their diet and what they supplement in tablets, and-what is of great importance-it would make caregivers choose iodine-containing medications (or other chemicals) more prudently. It should be stressed that compared to iodine deficiency, iodine in excess (acting either as a potential EDC or via other mechanisms) is much less harmful in such a sense that it affects only a small percentage of sensitive individuals, whereas the former affects whole populations; therefore, it causes endemic consequences.
Collapse
Affiliation(s)
- Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland.
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland.
| | - Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Paulina Iwan
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752, Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother's Memorial Hospital-Research Institute, 93-338, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338, Lodz, Poland
| |
Collapse
|
5
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Geysels RC, Peyret V, Martín M, Nazar M, Reale C, Bernal Barquero CE, Miranda L, Martí MA, Vito P, Masini-Repiso AM, Nicola JP. The Transcription Factor NF-κB Mediates Thyrotropin-Stimulated Expression of Thyroid Differentiation Markers. Thyroid 2021; 31:299-314. [PMID: 32935630 DOI: 10.1089/thy.2020.0208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: The nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription factor is a key regulator of cell survival, proliferation, and gene expression. Although activation of NF-κB signaling in thyroid follicular cells after thyrotropin (TSH) receptor (TSHR) engagement has been reported, the downstream signaling leading to NF-κB activation remains unexplored. Here, we sought to elucidate the mechanisms that regulate NF-κB signaling activation in response to TSH stimulation. Methods: Fisher rat-derived thyroid cell lines and primary cultures of NF-κB essential modulator (NEMO)-deficient mice thyrocytes were used as models. Signaling pathways leading to the activation of NF-κB were investigated by using chemical inhibitors and phospho-specific antibodies. Luciferase reporter gene assays and site-directed mutagenesis were used to monitor NF-κB-dependent gene transcriptional activity and the expression of thyroid differentiation markers was assessed by reverse transcription quantitative polymerase chain reaction and Western blot, respectively. Chromatin immunoprecipitation (ChIP) was carried out to investigate NF-κB subunit p65 DNA binding, and small interfering RNA (siRNA)-mediated gene knockdown approaches were used for studying gene function. Results: Using thyroid cell lines, we observed that TSH treatment leads to protein kinase C (PKC)-mediated canonical NF-κB p65 subunit nuclear expression. Moreover, TSH stimulation phosphorylated the kinase TAK-1, and its knockdown abolished TSH-induced NF-κB transcriptional activity. TSH induced the transcriptional activity of the NF-κB subunit p65 in a protein kinase A (PKA)-dependent phosphorylation at Ser-276. In addition, p65 phosphorylation at Ser-276 induced acetyl transferase p300 recruitment, leading to its acetylation on Lys-310 and thereby enhancing its transcriptional activity. Evaluation of the role played by NF-κB in thyroid physiology demonstrated that the canonical NF-κB inhibitor BAY 11-7082 reduced TSH-induced expression of thyroid differentiation markers. The involvement of NF-κB signaling in thyroid physiology was confirmed by assessing the TSH-induced gene expression in primary cultures of NEMO-deficient mice thyrocytes. ChIP and the knockdown experiments revealed that p65 is a nuclear effector of TSH actions, inducing the transcripcional expression of thyroid differentiation markers. Conclusions: Taken together, our results point to NF-κB being a pivotal mediator in the TSH-induced thyroid follicular cell differentiation, a relevant finding with potential physiological and pathophysiological implications.
Collapse
Affiliation(s)
- Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Magalí Nazar
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Carla Reale
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Carlos Eduardo Bernal Barquero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Lucas Miranda
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Pasquale Vito
- Biogem Consortium, Ariano Irpino, Italy
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Benevento, Italy
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología-Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI-CONICET), Córdoba, Argentina
| |
Collapse
|
7
|
Juweid ME, Tulchinsky M, Mismar A, Momani M, Zayed AA, Al Hawari H, Albsoul N, Mottaghy FM. Contemporary considerations in adjuvant radioiodine treatment of adults with differentiated thyroid cancer. Int J Cancer 2020; 147:2345-2354. [PMID: 32319676 DOI: 10.1002/ijc.33020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/14/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
Differentiated thyroid cancer (DTC) is the most common endocrine malignancy with a growing incidence worldwide. The initial conventional management is surgery, followed by consideration of 131 I treatment that includes three options. These are termed remnant ablation (targeting benign thyroid remnant), adjuvant (targeting presumed microscopic DTC) and known disease (targeting macroscopic DTC) treatments. Some experts mostly rely on clinicopathologic assessment for recurrence risk to select patients for the 131 I treatment. Others, in addition, apply radioiodine imaging to guide their treatment planning, termed theranostics (aka theragnostics or radiotheragnostics). In patients with low-risk DTC, remnant ablation rather than adjuvant treatment is generally recommended and, in this setting, the ATA recommends a low 131 I activity. 131 I adjuvant treatment is universally recommended in patients with high-risk DTC (a primary tumor of any size with gross extrathyroidal extension) and is generally recommended in intermediate-risk DTC (primary tumor >4 cm in diameter, locoregional metastases, microscopic extrathyroidal extension, aggressive histology or vascular invasion). The optimal amount of 131 I activity for adjuvant treatment is controversial, but experts reached a consensus that the 131 I activity should be greater than that for remnant ablation. The main obstacles to establishing timely evidence through randomized clinical trials for 131 I therapy include years-to-decades delay in recurrence and low disease-specific mortality. This mini-review is intended to update oncologists on the most recent clinical, pathologic, laboratory and imaging variables, as well as on the current 131 I therapy-related definitions and management paradigms, which should optimally equip them for individualized patient guidance and treatment.
Collapse
Affiliation(s)
- Malik E Juweid
- Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan
| | - Mark Tulchinsky
- Department of Radiology, Penn State University Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Ayman Mismar
- Department of General Surgery, University of Jordan, Amman, Jordan
| | - Munther Momani
- Division of Endocrinology, Department of Medicine, University of Jordan, Amman, Jordan
| | - Ayman A Zayed
- Division of Endocrinology, Department of Medicine, University of Jordan, Amman, Jordan
| | - Hussam Al Hawari
- Division of Endocrinology, Department of Medicine, University of Jordan, Amman, Jordan
| | - Nader Albsoul
- Department of General Surgery, University of Jordan, Amman, Jordan
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University of Aachen, Aachen, Germany
| |
Collapse
|
8
|
Cohen DPA, Lebsir D, Benderitter M, Souidi M. A systems biology approach to propose a new mechanism of regulation of repetitive prophylaxis of stable iodide on sodium/iodide symporter (NIS). Biochimie 2019; 162:208-215. [PMID: 31071356 DOI: 10.1016/j.biochi.2019.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 01/27/2023]
Abstract
Our group showed that repetitive dose of potassium iodide (KI) for eight days offers an efficient protection for exposure to repeated radioactive emissions without adverse effects on adult rats. However, differential expression of genes implicated in Wolff-Chaikoff effect was observed. To understand the Wolff-Chaikoff regulation and its molecular constituents during repetitive administration of KI, a biochemical reaction network was constructed as a "geographical" map of the thyrocyte depicting iodide and thyroid hormone synthesis. Path analysis of the network has been performed to investigate the presence of a regulatory circuit of the node iodide to the node "nis transcription". NIS is responsible for the uptake of KI and plays an important role in the Wolff-Chaikoff effect. The map is a source for the most updated information about iodide and thyroid hormone metabolism. Based on this map, we propose a hypothesis that shows a putative mechanism behind NIS regulation and KI uptake.
Collapse
Affiliation(s)
- David P A Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, 92262, Fontenay-aux-Roses, France
| | - Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRTOX, 92262, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-SANTE/SERAMED, 92262, Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-SANTE/SERAMED, 92262, Fontenay-aux-Roses, France.
| |
Collapse
|
9
|
Martín M, Modenutti CP, Peyret V, Geysels RC, Darrouzet E, Pourcher T, Masini-Repiso AM, Martí MA, Carrasco N, Nicola JP. A Carboxy-Terminal Monoleucine-Based Motif Participates in the Basolateral Targeting of the Na+/I- Symporter. Endocrinology 2019; 160:156-168. [PMID: 30496374 PMCID: PMC6936561 DOI: 10.1210/en.2018-00603] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/20/2018] [Indexed: 12/26/2022]
Abstract
The Na+/iodide (I-) symporter (NIS), a glycoprotein expressed at the basolateral plasma membrane of thyroid follicular cells, mediates I- accumulation for thyroid hormonogenesis and radioiodide therapy for differentiated thyroid carcinoma. However, differentiated thyroid tumors often exhibit lower I- transport than normal thyroid tissue (or even undetectable I- transport). Paradoxically, the majority of differentiated thyroid cancers show intracellular NIS expression, suggesting abnormal targeting to the plasma membrane. Therefore, a thorough understanding of the mechanisms that regulate NIS plasma membrane transport would have multiple implications for radioiodide therapy. In this study, we show that the intracellularly facing carboxy-terminus of NIS is required for the transport of the protein to the plasma membrane. Moreover, the carboxy-terminus contains dominant basolateral information. Using internal deletions and site-directed mutagenesis at the carboxy-terminus, we identified a highly conserved monoleucine-based sorting motif that determines NIS basolateral expression. Furthermore, in clathrin adaptor protein (AP)-1B-deficient cells, NIS sorting to the basolateral plasma membrane is compromised, causing the protein to also be expressed at the apical plasma membrane. Computer simulations suggest that the AP-1B subunit σ1 recognizes the monoleucine-based sorting motif in NIS carboxy-terminus. Although the mechanisms by which NIS is intracellularly retained in thyroid cancer remain elusive, our findings may open up avenues for identifying molecular targets that can be used to treat radioiodide-refractory thyroid tumors that express NIS intracellularly.
Collapse
Affiliation(s)
- Mariano Martín
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Carlos Pablo Modenutti
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN–CONICET), Buenos Aires, Argentina
- Correspondence: Juan Pablo Nicola, PhD, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina. E-mail:
| | - Victoria Peyret
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Romina Celeste Geysels
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Elisabeth Darrouzet
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Université de Nice Sophia Antipolis–Université Côte d’Azur, Nice, France
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Commissariat à l’Energie Atomique, Nice, France
| | - Thierry Pourcher
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Université de Nice Sophia Antipolis–Université Côte d’Azur, Nice, France
- Laboratoire Transporteurs en Imagerie et Radiothérapie en Oncologie, Faculté de Médecine, Commissariat à l’Energie Atomique, Nice, France
| | - Ana María Masini-Repiso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| | - Marcelo Adrián Martí
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales–Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN–CONICET), Buenos Aires, Argentina
| | - Nancy Carrasco
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut
| | - Juan Pablo Nicola
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología–Consejo Nacional de Investigaciones Científicas y Técnicas (CIBICI–CONICET), Córdoba, Argentina
| |
Collapse
|
10
|
da Silva MM, Xavier LLF, Gonçalves CFL, Santos-Silva AP, Paiva-Melo FD, de Freitas ML, Fortunato RS, Miranda-Alves L, Ferreira ACF. Bisphenol A increases hydrogen peroxide generation by thyrocytes both in vivo and in vitro. Endocr Connect 2018; 7:1196-1207. [PMID: 30352396 PMCID: PMC6215800 DOI: 10.1530/ec-18-0348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
Abstract
Bisphenol A (BPA) is the most common monomer in polycarbonate plastics and an endocrine disruptor. Though some effects of BPA on thyroid hormone (TH) synthesis and action have been described, the impact of this compound on thyroid H2O2 generation remains elusive. H2O2 is a reactive oxygen species (ROS), which could have deleterious effect on thyrocytes if in excess. Therefore, herein we aimed at evaluating the effect of BPA exposition both in vivo and in vitro on H2O2 generation in thyrocytes, besides other essential steps for TH synthesis. Female Wistar rats were treated with vehicle (control) or BPA 40 mg/kg BW for 15 days, by gavage. We then evaluated thyroid iodide uptake, mediated by sodium-iodide symporter (NIS), thyroperoxidase (TPO) and dual oxidase (DOUX) activities (H2O2 generation). Hydrogen peroxide generation was increased, while iodide uptake and TPO activity were reduced by BPA exposition. We have also incubated the rat thyroid cell line PCCL3 with 10-9 M BPA and evaluated Nis and Duox mRNA levels, besides H2O2 generation. Similar to that found in vivo, BPA treatment also led to increased H2O2 generation in PCCL3. Nis mRNA levels were reduced and Duox2 mRNA levels were increased in BPA-exposed cells. To evaluate the importance of oxidative stress on BPA-induced Nis reduction, PCCL3 was treated with BPA in association to N-acetylcysteine, an antioxidant, which reversed the effect of BPA on Nis. Our data suggest that BPA increases ROS production in thyrocytes, what could lead to oxidative damage thus possibly predisposing to thyroid disease.
Collapse
Affiliation(s)
- Maurício Martins da Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lueni Lopes Felix Xavier
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Carlos Frederico Lima Gonçalves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Santos-Silva
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Francisca Diana Paiva-Melo
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mariana Lopes de Freitas
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rodrigo Soares Fortunato
- Laboratory of Molecular RadiobiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Leandro Miranda-Alves
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine PhysiologyInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- NUMPEXCampus Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
11
|
Lebsir D, Manens L, Grison S, Lestaevel P, Ebrahimian T, Suhard D, Phan G, Dublineau I, Tack K, Benderitter M, Pech A, Jourdain JR, Souidi M. Effects of repeated potassium iodide administration on genes involved in synthesis and secretion of thyroid hormone in adult male rat. Mol Cell Endocrinol 2018; 474:119-126. [PMID: 29496566 DOI: 10.1016/j.mce.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND A single dose of potassium iodide (KI) is recommended to reduce the risk of thyroid cancer during nuclear accidents. However in case of prolonged radioiodine exposure, more than one dose of KI may be necessary. This work aims to evaluate the potential toxic effect of repeated administration of KI. METHODS Adult Wistar rats received an optimal dose of KI 1 mg/kg over a period of 1, 4 or 8 days. RESULTS hormonal status (TSH, FT4) of treated rats was unaffected. Contrariwise, a sequential Wolff-Chaikoff effect was observed, resulting in a prompt decrease of NIS and MCT8 mRNA expression (-58% and -26% respectively), followed by a delayed decrease of TPO mRNA expression (-33%) in conjunction with a stimulation of PDS mRNA expression (+62%). CONCLUSION we show for the first time that repeated administration of KI at 1 mg/kg/24h doesn't cause modification of thyroid hormones level, but leads to a reversible modification of the expression of genes involved in the synthesis and secretion of thyroid hormones.
Collapse
Affiliation(s)
- Dalila Lebsir
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Line Manens
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Stephane Grison
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Teni Ebrahimian
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - David Suhard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SDI, LRC, 92262 Fontenay-aux-Roses, France
| | - Isabelle Dublineau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Karine Tack
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Annick Pech
- Pharmacie centrale des armées, Direction des Approvisionnement en produits de Santé des Armées, 45000 Orléans, France
| | - Jean-Rene Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, 92262 Fontenay-aux-Roses, France
| | - Maâmar Souidi
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, 92262 Fontenay-aux-Roses, France.
| |
Collapse
|
12
|
Rong S, Gao Y, Yang Y, Shao H, Okekunle AP, Lv C, Du Y, Sun H, Jiang Y, Darko GM, Sun D. Nitric oxide is involved in the hypothyroidism with significant morphology changes in female Wistar rats induced by chronic exposure to high water iodine from potassium iodate. CHEMOSPHERE 2018; 206:320-329. [PMID: 29754056 DOI: 10.1016/j.chemosphere.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Epidemiological studies indicated that chronic exposure to high water iodine is associated with primary hypothyroidism (PH) and subclinical hypothyroidism (SCH). However, the mechanism is not well understood. In this study, we explored whether chronic exposure to high water iodine from potassium iodate (KIO3) can induce hypothyroidism in addition to determining if nitric oxide (NO) is involved in the pathogenesis. 96 female Wistar rats were divided into six groups: control, I1000μg/L, I3000μg/L, I6000μg/L, N-nitro-L-arginine methylester (L-NAME) and L-NAME+I6000μg/L. After 3 months, urine iodine concentration, thyroid hormone, NO and nitric oxide synthase (NOS) serum levels were determined. Additionally, thyroid expression of inducible nitric oxide synthase (iNOS) was also investigated. Thyroid morphology was observed under light microscopy and transmission electron microscope. SCH as indicated by elevated serum thyrotropin (TSH) was induced among rats exposed to 3000 μg/L I-, while rats treated with 6000 μg/L I- presented PH characterized by elevated TSH and lowered total thyroxine in serum. Moreover, serum NO, NOS and iNOS expression in the thyroid were significantly increased in I3000μg/L and I6000μg/L groups. Changes in thyroid function and morphology in the L-NAME+I6000μg/L group were extenuated compared to I6000μg/L group. These findings suggested that chronic exposure to high water iodine from KIO3 likely induces hypothyroidism with significant morphology changes in female Wistar rats and NO appears to be involved in the pathogenesis.
Collapse
Affiliation(s)
- Shengzhong Rong
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hanwen Shao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Akinkunmi Paul Okekunle
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Chunpeng Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yang Du
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Gottfried M Darko
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
13
|
Maternal Exposure to Iodine Excess Throughout Pregnancy and Lactation Induces Hypothyroidism in Adult Male Rat Offspring. Sci Rep 2017; 7:15591. [PMID: 29142304 PMCID: PMC5688151 DOI: 10.1038/s41598-017-15529-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
This study aimed to investigate the consequences of maternal exposure to iodine excess (IE; 0.6 mg NaI/L) throughout pregnancy and lactation on the hypothalamus-pituitary-thyroid axis of the male offspring in adulthood. Maternal IE exposure increased hypothalamic Trh mRNA expression and pituitary Tsh expression and secretion in the adult male offspring. Moreover, the IE-exposed offspring rats presented reduced thyroid hormones levels, morphological alterations in the thyroid follicles, increased thyroid oxidative stress and decreased expression of thyroid differentiation markers (Tshr, Nis, Tg, Tpo, Mct8) and thyroid transcription factors (Nkx2.1, Pax8). Finally, the data presented here strongly suggest that epigenetic mechanisms, as increased DNA methylation, augmented DNA methyltransferases expression, hypermethylation of histone H3, hypoaceylation of histones H3 and H4, increased expression/activity of histone deacetylases and decreased expression/activity of histone acetyltransferases are involved in the repression of thyroid gene expression in the adult male offspring. In conclusion, our results indicate that rat dams' exposure to IE during pregnancy and lactation induces primary hypothyroidism and triggers several epigenetic changes in the thyroid gland of their male offspring in adulthood.
Collapse
|
14
|
Serrano-Nascimento C, Salgueiro RB, Vitzel KF, Pantaleão T, Corrêa da Costa VM, Nunes MT. Iodine excess exposure during pregnancy and lactation impairs maternal thyroid function in rats. Endocr Connect 2017; 6:510-521. [PMID: 28814477 PMCID: PMC5597975 DOI: 10.1530/ec-17-0106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022]
Abstract
Adequate maternal iodine consumption during pregnancy and lactation guarantees normal thyroid hormones (TH) production, which is crucial to the development of the fetus. Indeed, iodine deficiency is clearly related to maternal hypothyroidism and deleterious effects in the fetal development. Conversely, the effects of iodine excess (IE) consumption on maternal thyroid function are still controversial. Therefore, this study aimed to investigate the impact of IE exposure during pregnancy and lactation periods on maternal hypothalamus-pituitary-thyroid axis. IE-exposed dams presented reduced serum TH concentration and increased serum thyrotropin (TSH) levels. Moreover, maternal IE exposure increased the hypothalamic expression of Trh and the pituitary expression of Trhr, Dio2, Tsha and Tshb mRNA, while reduced the Gh mRNA content. Additionally, IE-exposed dams presented thyroid morphological alterations, increased thyroid oxidative stress and decreased expression of thyroid genes/proteins involved in TH synthesis, secretion and metabolism. Furthermore, Dio1 mRNA expression and D1 activity were reduced in the liver and the kidney of IE-treated animals. Finally, the mRNA expression of Slc5a5 and Slc26a4 were reduced in the mammary gland of IE-exposed rats. The latter results are in accordance with the reduction of prolactin expression and serum levels in IE-treated dams. In summary, our study indicates that the exposure to IE during pregnancy and lactation induces primary hypothyroidism in rat dams and impairs iodide transfer to the milk.
Collapse
Affiliation(s)
- Caroline Serrano-Nascimento
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rafael Barrera Salgueiro
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kaio Fernando Vitzel
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thiago Pantaleão
- Carlos Chagas Filho Biophysics InstituteFederal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Maria Tereza Nunes
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Rossich LE, Thomasz L, Nicola JP, Nazar M, Salvarredi LA, Pisarev M, Masini-Repiso AM, Christophe-Hobertus C, Christophe D, Juvenal GJ. Effects of 2-iodohexadecanal in the physiology of thyroid cells. Mol Cell Endocrinol 2016; 437:292-301. [PMID: 27568464 DOI: 10.1016/j.mce.2016.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them, 2-iodohexadecanal (2-IHDA) has been identified and proposed to play a role in thyroid autoregulation. The aim of this study was to compare the effect of iodide and 2-IHDA on thyroid cell physiology. For this purpose, FRTL-5 thyroid cells were incubated with the two compounds during 24 or 48 h and several thyroid parameters were evaluated such as: iodide uptake, intracellular calcium and H2O2 levels. To further explore the molecular mechanism involved in 2-IHDA action, transcript and protein levels of genes involved in thyroid hormone biosynthesis, as well as the transcriptional expression of these genes were evaluated in the presence of iodide and 2-IHDA. The results obtained indicate that 2-IHDA reproduces the action of excess iodide on the "Wolff-Chaikoff" effect as well as on thyroid specific genes transcription supporting its role in thyroid autoregulation.
Collapse
Affiliation(s)
- Luciano E Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Juan P Nicola
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Magali Nazar
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Leonardo A Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Mario Pisarev
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires School of Medicine, CONICET, Buenos Aires, Argentina
| | - Ana M Masini-Repiso
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | | | | | - Guillermo J Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Lorenz C, Opitz R, Trubiroha A, Lutz I, Zikova A, Kloas W. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:63-73. [PMID: 27262936 DOI: 10.1016/j.aquatox.2016.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 06/05/2023]
Abstract
The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression.
Collapse
Affiliation(s)
- Claudia Lorenz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany.
| | - Robert Opitz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Achim Trubiroha
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM), Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Ilka Lutz
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Andrea Zikova
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Werner Kloas
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany; Department of Endocrinology, Institute of Biology, Humboldt University Berlin, Germany
| |
Collapse
|