1
|
Ríos Medrano MA, Bigi MM, Martínez Ponce P, Podesta EJ, Orlando UD. Exposure to anticancer drugs modulates the expression of ACSL4 and ABCG2 proteins in adrenocortical carcinoma cells. Heliyon 2023; 9:e20769. [PMID: 37867801 PMCID: PMC10585233 DOI: 10.1016/j.heliyon.2023.e20769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare and malignant disease, with more than 50 % of patients developing hormone-secreting tumors. These tumors are genetically heterogeneous and potentially lethal, as metastasis is often underway at the time of diagnosis. While chemoresistance can be multifactorial, Acyl CoA synthetase 4 (ACSL4) is known to contribute to the generation of highly aggressive cellular phenotypes, while increased expression and activity of multidrug transporters such as ATP-binding cassette subfamily G member 2 (ABCG2) are known to play a key role. Therefore, the objective of this work was to determine changes in the expression of ACSL4 and ABCG2 in ACC cell lines after exposure to antitumor drugs. Bioinformatics analysis of public database GSE140818 revealed higher ACSL4 and ABCG2 expression in HAC15 cells resistant to mitotane when compared to wild type cells. In addition, our studies revealed an increase in ACSL4 and ABCG2 expression in lowly aggressive H295R cells undergoing early treatment with non-lethal concentrations of mitotane, doxorubicin and cisplatin. Comparable results were obtained in lowly aggressive breast cancer cells MCF-7. The increase in ACSL4 and ABCG2 expression favored tumor cell viability, proliferation and compound efflux, an effect partially offset by ACSL4 and ABCG2 inhibitors. These results provide relevant data on the undesired molecular effects of antitumor drugs and may fuel future studies on patients' early response to antitumor treatment.
Collapse
Affiliation(s)
- Mayra Agustina Ríos Medrano
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - María Mercedes Bigi
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - Paloma Martínez Ponce
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| | - Ernesto Jorge Podesta
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
- Universidad de Buenos Aires. Facultad de Medicina. Departamento de Bioquímica Humana. Buenos Aires. Argentina
| | - Ulises Daniel Orlando
- Universidad de Buenos Aires-CONICET. Instituto de Investigaciones Biomédicas (INBIOMED). Buenos Aires. Argentina
| |
Collapse
|
2
|
Lerario AM, Mohan DR, Hammer GD. Update on Biology and Genomics of Adrenocortical Carcinomas: Rationale for Emerging Therapies. Endocr Rev 2022; 43:1051-1073. [PMID: 35551369 PMCID: PMC9695111 DOI: 10.1210/endrev/bnac012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 11/19/2022]
Abstract
The adrenal glands are paired endocrine organs that produce steroid hormones and catecholamines required for life. Adrenocortical carcinoma (ACC) is a rare and often fatal cancer of the peripheral domain of the gland, the adrenal cortex. Recent research in adrenal development, homeostasis, and disease have refined our understanding of the cellular and molecular programs controlling cortical growth and renewal, uncovering crucial clues into how physiologic programs are hijacked in early and late stages of malignant neoplasia. Alongside these studies, genome-wide approaches to examine adrenocortical tumors have transformed our understanding of ACC biology, and revealed that ACC is composed of distinct molecular subtypes associated with favorable, intermediate, and dismal clinical outcomes. The homogeneous transcriptional and epigenetic programs prevailing in each ACC subtype suggest likely susceptibility to any of a plethora of existing and novel targeted agents, with the caveat that therapeutic response may ultimately be limited by cancer cell plasticity. Despite enormous biomedical research advances in the last decade, the only potentially curative therapy for ACC to date is primary surgical resection, and up to 75% of patients will develop metastatic disease refractory to standard-of-care adjuvant mitotane and cytotoxic chemotherapy. A comprehensive, integrated, and current bench-to-bedside understanding of our field's investigations into adrenocortical physiology and neoplasia is crucial to developing novel clinical tools and approaches to equip the one-in-a-million patient fighting this devastating disease.
Collapse
Affiliation(s)
- Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Dipika R Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| | - Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-2200, USA
| |
Collapse
|
3
|
Sigala S, Rossini E, Abate A, Tamburello M, Bornstein SR, Hantel C. An update on adrenocortical cell lines of human origin. Endocrine 2022; 77:432-437. [PMID: 35764904 PMCID: PMC9385758 DOI: 10.1007/s12020-022-03112-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/10/2022] [Indexed: 12/23/2022]
Abstract
Adrenocortical carcinoma (ACC) is a rare, heterogenous and highly malignant disease. Management of ACC is dependent on disease stage with complete surgical resection as the only potentially curative option. However, advanced, un-resectable, metastatic stages and also recurrences often require systemic treatments, which are unfortunately nowadays still unsatisfactory. The scarcity of preclinical models reflecting patient heterogeneities and furthermore drug-resistant phenotypes, has hampered the progress and development of new therapies in recent years. In this review, we provide an overview on the classical models and substantial progress which has been made over the last years in context of this aggressive disease.
Collapse
Affiliation(s)
- Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124, Brescia, Italy
| | - Stefan R Bornstein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, WC2R 2LS, UK
- Center for Regenerative Therapies, Technische Universität Dresden, 01307, Dresden, Germany
- Paul-Langerhans-Institute Dresden, Helmholtz Center Munich, University Hospital Carl Gustav Carus, Faculty of Medicine, Technische Universität Dresden, 01307, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091, Zürich, Switzerland.
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307, Dresden, Germany.
| |
Collapse
|
4
|
Manso J, Sharifi-Rad J, Zam W, Tsouh Fokou PV, Martorell M, Pezzani R. Plant Natural Compounds in the Treatment of Adrenocortical Tumors. Int J Endocrinol 2021; 2021:5516285. [PMID: 34567112 PMCID: PMC8463247 DOI: 10.1155/2021/5516285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Plant natural products are a plethora of diverse and complex molecules produced by the plant secondary metabolism. Among these, many can reserve beneficial or curative properties when employed to treat human diseases. Even in cancer, they can be successfully used and indeed numerous phytochemicals exert antineoplastic activity. The most common molecules derived from plants and used in the fight against cancer are polyphenols, i.e., quercetin, genistein, resveratrol, curcumin, etc. Despite valuable data especially in preclinical models on such compounds, few of them are currently used in the medical practice. Also, in adrenocortical tumors (ACT), phytochemicals are scarcely or not at all used. This work summarizes the available research on phytochemicals used against ACT and adrenocortical cancer, a very rare disease with poor prognosis and high metastatic potential, and wants to contribute to stimulate preclinical and clinical research to find new therapeutic strategies among the overabundance of biomolecules produced by the plant kingdom.
Collapse
Affiliation(s)
- Jacopo Manso
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Wissam Zam
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Tartous University, Tartous, Syria
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, Centre for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Raffaele Pezzani
- Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, Padova 35128, Italy
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, via Ospedale 105, 35128 Padova, Italy
| |
Collapse
|
5
|
Kar A, Zhang Y, Yacob BW, Saeed J, Tompkins KD, Bagby SM, Pitts TM, Somerset H, Leong S, Wierman ME, Kiseljak-Vassiliades K. Targeting PDZ-binding kinase is anti-tumorigenic in novel preclinical models of ACC. Endocr Relat Cancer 2019; 26:765-778. [PMID: 31325906 PMCID: PMC6938568 DOI: 10.1530/erc-19-0262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022]
Abstract
Adrenocortical carcinoma (ACC) is an aggressive orphan malignancy with less than 35% 5-year survival and 75% recurrence. Surgery remains the primary therapy and mitotane, an adrenolytic, is the only FDA-approved drug with wide-range toxicities and poor tolerability. There are no targeted agents available to date. For the last three decades, H295R cell line and its xenograft were the only available preclinical models. We recently developed two new ACC patient-derived xenograft mouse models and corresponding cell lines (CU-ACC1 and CU-ACC2) to advance research in the field. Here, we have utilized these novel models along with H295R cells to establish the mitotic PDZ-binding kinase (PBK) as a promising therapeutic target. PBK is overexpressed in ACC samples and correlates with poor survival. We show that PBK is regulated by FOXM1 and targeting PBK via shRNA decreased cell proliferation, clonogenicity and anchorage-independent growth in ACC cell lines. PBK silencing inhibited pAkt, pp38MAPK and pHistone H3 altering the cell cycle. Therapeutically, targeting PBK with the small-molecule inhibitor HITOPK032 phenocopied PBK-specific modulation of pAkt and pHistone H3, but also induced apoptosis via activation of JNK. Consistent with in vitro findings, treatment of CU-ACC1 PDXs with HITOPK032 significantly reduced tumor growth by 5-fold (P < 0.01). Treated tumor tissues demonstrated increased rates of apoptosis and JNK activation, with decreased pAkt and Histone H3 phosphorylation, consistent with effects observed in ACC cell lines. Together these studies elucidate the mechanism of PBK in ACC tumorigenesis and establish the potential therapeutic potential of HITOPK032 in ACC patients.
Collapse
Affiliation(s)
- Adwitiya Kar
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Yu Zhang
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Betelehem W. Yacob
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Jordan Saeed
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Kenneth D. Tompkins
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stacey M. Bagby
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Todd M. Pitts
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Hilary Somerset
- Department of Pathology, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Stephen Leong
- Division of Medical Oncology, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
| | - Margaret E. Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine Anschutz Medical Campus Aurora, CO 80045
- Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045
| |
Collapse
|
6
|
Abstract
Adrenocortical carcinoma (ACC) is an uncommon and heterogeneous disease and may present differently in children and adults. Management of ACC is dependent on disease stage and complete surgical resection is the only potentially curative treatment. The first and most extensively used adrenocortical cancer cell line, as model system to examine mechanisms controlling normal and pathologic function of adrenal cortex, was initially isolated in 1980. Although NCI-H295 maintained steroid capabilities and adrenocortical characteristics, the lack of new cell lines and animal models of ACC has hampered the progress and development of new therapies. In this review we provide description of cellular and patient-derived tumor xenograft (PDTX) models of ACC generated for the elucidation of the underlying pathogenic mechanisms and preclinical functional studies for this aggressive disease.
Collapse
|
7
|
Metastatic Adrenocortical Carcinoma: a Single Institutional Experience. Discov Oncol 2019; 10:161-167. [PMID: 31468469 DOI: 10.1007/s12672-019-00367-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with limited data to guide the management of metastatic disease. The optimal treatment strategies and outcomes of patients with metastatic ACC remain areas of active interest. We retrospectively reviewed patients with ACC who were treated with systemic therapy between January 1997 and October 2016 at The Ohio State University Comprehensive Cancer Center. Kaplan-Meier and Cox proportional hazards regression models were used for survival analysis. We identified 65 patients diagnosed with ACC during the given time period, and 36 patients received systemic therapy for distant metastatic disease. Median age at diagnosis was 50 (range 28-87). Median overall survival (OS) from time of diagnosis of ACC was 27 months (95% CI 19.6-39.3), and median OS from time of systemic treatment for metastatic disease was 18.7 months (95% CI 9.3-26.0). Clinical characteristics at time of initiation of systemic therapy were assessed, and presence of bone metastases (p = 0.66), ascites (p = 0.19), lung metastases (p = 0.12), liver metastases (p = 0.47), as well as hormonal activity of tumor (p = 0.19), were not prognostic for survival. Six patients with liver metastases treated with systemic therapy who received liver-directed therapy with either transarterial chemoembolization (TACE) or selective internal radiation therapy (SIRT) had longer survival than those who did not (p = 0.011). Our data expands the knowledge of clinical characteristics and outcomes of patients with ACC and suggests a possible role for incorporating liver-directed therapies for patients with hepatic metastases.
Collapse
|
8
|
Abstract
Adrenocortical carcinoma (ACC) is a rare, aggressive, and frequently deadly cancer. Up to 75% of all patients will eventually develop metastatic disease, and our current medical therapies for ACC provide limited - if any - survival benefit. These statistics highlight a crucial need for novel approaches. Recent studies performing comprehensive molecular profiling on ACC have illuminated that ACC is comprised of three clinically distinct molecular subtypes, bearing differential regulation of cell cycle, epigenetics, Wnt/β-catenin signaling, PKA signaling, steroidogenesis and immune cell biology. Furthermore, these studies have spurred the development of molecular subtype-based biomarkers, contextualized outcomes of recent clinical trials, and advanced our understanding of the underlying biology of adrenocortical homeostasis and cancer. In this review, we describe these findings and their implications for new strategies to apply targeted therapies to ACC.
Collapse
|
9
|
Altieri B, Colao A, Faggiano A. The role of insulin-like growth factor system in the adrenocortical tumors. MINERVA ENDOCRINOL 2018; 44:43-57. [PMID: 29963827 DOI: 10.23736/s0391-1977.18.02882-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The different presentation of adrenocortical tumors in benign adenoma (ACA) or adrenocortical carcinoma (ACC) is related to the variability at the molecular level. The insulin-like growth factor (IGF) system is one of the most frequently altered pathways in ACC. In this review we will critically analyze the evidence regarding the pathogenic role of the IGF system in adrenal tumorigenesis, focusing on ACC. We will also examine the preclinical and clinical studies which investigated the targeting of the IGF system as a therapeutic approach in ACC. EVIDENCE ACQUISITION The IGF system plays a crucial role in the embryogenesis of adrenal glands. No significant alterations of the IGF system were observed in ACA. In ACC, the IGF2 overexpression is one of the most frequent molecular change presented in more than 85% of cases. However, IGF2 seems to be only a tumor progression factor which requires additional hits to trigger adrenal tumorigenesis. Also, the IGF1 receptor (IGF1R) appears to be higher expressed in ACC. Many IGF1R target-drugs have been developed to inhibit the activation of the IGF system. EVIDENCE SYNTHESIS Preclinical studies using antibody or tyrosine kinase which target the IGF1R, or the dual-targeting of IGF1R and insulin receptor (IR) reduced ACC cells proliferation both in vitro and in vivo in mouse xenograft model. However, these promising results were not confirmed in clinical trials. CONCLUSIONS Nowadays, predictive markers for the response of target-IGF therapy are missing and further studies which investigate new molecular markers and evaluate the entire IGF receptors, including the IR, are urgently needed.
Collapse
Affiliation(s)
- Barbara Altieri
- Division of Endocrinology and Diabetes, Department of Internal Medicine I, University Hospital, University of Wuerzburg, Wuerzburg, Germany - .,Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy -
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| | - Antongiulio Faggiano
- Department of Clinical Medicine and Surgery, University "Federico II", Naples, Italy
| |
Collapse
|
10
|
Hantel C, Shapiro I, Poli G, Chiapponi C, Bidlingmaier M, Reincke M, Luconi M, Jung S, Beuschlein F. Targeting heterogeneity of adrenocortical carcinoma: Evaluation and extension of preclinical tumor models to improve clinical translation. Oncotarget 2018; 7:79292-79304. [PMID: 27764813 PMCID: PMC5346714 DOI: 10.18632/oncotarget.12685] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/22/2016] [Indexed: 11/30/2022] Open
Abstract
In recent years it has been recognized that clinical translation of novel therapeutic strategies for patients with adrenocortical carcinoma (ACC) often fails. These disappointing results indicate that the currently utilized tumor models only poorly reflect relevant pathophysiology and, thereby, do not predict clinical applicability of novel pharmacological approaches. However, also the development of new preclinical ACC models has remained a challenge with only one human cell line (NCI-H295R) and one recently established human pediatric xenograft model (SJ-ACC3) being available for this highly heterogeneous malignancy. Our current study furthermore reveals a poor reproducibility of therapeutic action between different clones of the most commonly used tumor model NCI-H295R. In an attempt to broaden the current preclinical armamentarium, we aimed at the development of patient-individual tumor models. During these studies, one xenograft (MUC-1) displayed marked engraftment and sustained tumor growth. MUC-1 tumor analysis revealed highly vascularized, proliferating and SF-1 positive xenografts. In a next step, we characterized all currently available human tumor models for ACC for Ki67, SF-1 and EGF-receptor status in comparison with MUC-1-xenografts. In addition, we established a primary culture, which is now viable over 31 passages with sustained nuclear SF-1 and cytoplasmic 3βHSD immuno-positivity. Subsequent investigation of therapeutic responsiveness upon treatment with the current systemic gold standard EDP-M (etoposide, doxorubicin, cisplatin and mitotane) demonstrated maintenance of the clinically observed drug resistance for MUC-1 exclusively. In summary, we provide evidence for a novel patient-derived tumor model with the potential to improve clinical prediction of novel therapeutic strategies for patients with ACC.
Collapse
Affiliation(s)
- Constanze Hantel
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Igor Shapiro
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Giada Poli
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Martin Bidlingmaier
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Martin Reincke
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Michaela Luconi
- Endocrinology Unit, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Sara Jung
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| | - Felix Beuschlein
- Endocrine Research Unit, Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
11
|
Morin A, Ruggiero C, Robidel E, Doghman-Bouguerra M, Das AT, Castellano R, Josselin E, Favier J, Lalli E. Establishment of a mouse xenograft model of metastatic adrenocortical carcinoma. Oncotarget 2017; 8:51050-51057. [PMID: 28881628 PMCID: PMC5584229 DOI: 10.18632/oncotarget.16909] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
Adrenocortical carcinoma is a rare neoplasm with a poor prognosis. Very important advances have been made in the identification of the genetic determinants of adrenocortical carcinoma pathogenesis but our understanding is still limited about the mechanisms that determine cancer spread and metastasis. One major problem hindering preclinical experimentation for new therapies for adrenocortical carcinoma is represented by the lack of suitable animal models for metastatic disease. With the aim to overcome these limitations, in this study we tested several protocols in order to establish a mouse xenograft model of metastatic adrenocortical carcinoma. The most efficient method, based upon intrasplenic injection followed by splenectomy, produced metastases with high efficiency, whose development could be followed over time by bioluminescence measurements. We expect that the availability of this model will greatly improve the possibilities for preclinical testing of new treatments for advanced-stage disease.
Collapse
Affiliation(s)
- Aurélie Morin
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Inserm UMR970, Paris Cardiovascular Research Centre, Paris, France
| | - Carmen Ruggiero
- Université Côte d’Azur, Valbonne, Sophia Antipolis, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Sophia Antipolis, France
| | - Estelle Robidel
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Inserm UMR970, Paris Cardiovascular Research Centre, Paris, France
| | - Mabrouka Doghman-Bouguerra
- Université Côte d’Azur, Valbonne, Sophia Antipolis, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Sophia Antipolis, France
| | - Atze T. Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rémy Castellano
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Emmanuelle Josselin
- Aix Marseille University, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Judith Favier
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Inserm UMR970, Paris Cardiovascular Research Centre, Paris, France
| | - Enzo Lalli
- Université Côte d’Azur, Valbonne, Sophia Antipolis, France
- Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, Sophia Antipolis, France
| |
Collapse
|