1
|
Sun Y. Research on Detection of Sterol Doping in Sports by Electrochemical Sensors: A Review. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:3394079. [PMID: 36117750 PMCID: PMC9477621 DOI: 10.1155/2022/3394079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
The use of doping by athletes to improve performance is prohibited. Therefore, doping testing is an important step to ensure fairness in sports. Doping is gradually metabolized in the body and is therefore difficult to detect immediately by a common method. At the same time, the emergence of new doping agents poses a challenge for highly sensitive detection. Electrochemical sensors are a fast, highly sensitive, and inexpensive analytical detection technology. It provides qualitative and quantitative determination of analytes by altering the electrochemical signal of the analyte or probe at the electrode. In this min-review, we summarized the different electrochemical sensing strategies for sterol doping detection. Some of the representative papers were interpreted in detail. In addition, we compare different sensing strategies.
Collapse
Affiliation(s)
- Yunyan Sun
- Physical Education Department, Nanyang Institute of Technology, Nanyang, Henan 473000, China
| |
Collapse
|
2
|
Fitzgerald CCJ, Bowen C, Elbourne M, Cawley A, McLeod MD. Energy-Resolved Fragmentation Aiding the Structure Elucidation of Steroid Biomarkers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1276-1281. [PMID: 35791638 DOI: 10.1021/jasms.2c00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification and confirmation of steroid sulfate metabolites in biological samples are essential to various fields, including anti-doping analysis and clinical sciences. Ultra-high-performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) is the leading method for the detection of intact steroid conjugates in biofluids, but because of the inherent complexity of biological samples and the low concentration of many targets of interest, metabolite identification based solely on mass spectrometry remains a major challenge. The confirmation of new metabolites typically depends on a comparison with synthetically derived reference materials that encompass a range of possible conjugation sites and stereochemistries. Herein, energy-resolved collision-induced dissociation (CID) is used as part of UHPLC-HRMS/MS analysis to distinguish between regio- and stereo-isomeric steroid sulfate compounds. This wholly MS-based approach was employed to guide the synthesis of reference materials to unambiguously confirm the identity of an equine steroid sulfate biomarker of testosterone propionate administration.
Collapse
Affiliation(s)
- Christopher C J Fitzgerald
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher Bowen
- Mass Spectrometry Business Unit, Shimadzu Scientific Instruments (Australasia), Rydalmere, New South Wales 2116, Australia
| | - Madysen Elbourne
- Centre for Forensic Science, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Adam Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, New South Wales 2000, Australia
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
3
|
Fitzgerald CCJ, McLeod MD. Synthesis of stable isotope labelled steroid bis(sulfate) conjugates and their behaviour in collision induced dissociation experiments. Org Biomol Chem 2022; 20:3311-3322. [PMID: 35354200 DOI: 10.1039/d2ob00375a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Steroid bis(sulfate) metabolites derived from the two-fold sulfation of unconjugated precursors represent an important yet understudied portion of the steroid profile. The investigation of these compounds in fields such as medicine or anti-doping science relies on mass spectrometry (MS) as the principal tool to identify and quantify biomarkers of interest and depends in turn on access to steroid reference materials and their stable isotope labelled (SIL) derivatives. A new [18O] stable isotope label for sulfate metabolites is reported, which allows for the selective, late-stage and 'one-pot' synthesis of a variety of SIL-steroid conjugates suitable as MS probes and internal standards. The method is applied to more comprehensively study the MS behaviour of steroid bis(sulfate) compounds through collision-induced dissociation (CID) experiments.
Collapse
Affiliation(s)
| | - Malcolm D McLeod
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
4
|
Huml L, Tauchen J, Rimpelová S, Holubová B, Lapčík O, Jurášek M. Advances in the Determination of Anabolic-Androgenic Steroids: From Standard Practices to Tailor-Designed Multidisciplinary Approaches. SENSORS (BASEL, SWITZERLAND) 2021; 22:4. [PMID: 35009549 PMCID: PMC8747103 DOI: 10.3390/s22010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Anabolic-androgenic steroids (AASs), a group of compounds frequently misused by athletes and, unfortunately, also by the general population, have lately attracted global attention; thus, significant demands for more precise, facile, and rapid AAS detection have arisen. The standard methods ordinarily used for AAS determination include liquid and gas chromatography coupled with mass spectrometry. However, good knowledge of steroid metabolism, pretreatment of samples (such as derivatization), and well-trained operators of the instruments are required, making this procedure expensive, complicated, and not routinely applicable. In the drive to meet current AAS detection demands, the scientific focus has shifted to developing novel, tailor-made approaches leading to time- and cost-effective, routine, and field-portable methods for AAS determination in various matrices, such as biological fluids, food supplements, meat, water, or other environmental components. Therefore, herein, we present a comprehensive review article covering recent advances in AAS determination, with a strong emphasis on the increasingly important role of chemically designed artificial sensors, biosensors, and antibody- and fluorescence-based methods.
Collapse
Affiliation(s)
- Lukáš Huml
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czech Republic;
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic;
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic;
| | - Oldřich Lapčík
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| | - Michal Jurášek
- Department of Chemistry of Natural Compounds, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, 16628 Prague, Czech Republic; (O.L.); (M.J.)
| |
Collapse
|
5
|
Doping Prevalence in Competitive Sport: Evidence Synthesis with "Best Practice" Recommendations and Reporting Guidelines from the WADA Working Group on Doping Prevalence. Sports Med 2021; 51:1909-1934. [PMID: 33900578 DOI: 10.1007/s40279-021-01477-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The prevalence of doping in competitive sport, and the methods for assessing prevalence, remain poorly understood. This reduces the ability of researchers, governments, and sporting organizations to determine the extent of doping behavior and the impacts of anti-doping strategies. OBJECTIVES The primary aim of this subject-wide systematic review was to collate and synthesize evidence on doping prevalence from published scientific papers. Secondary aims involved reviewing the reporting accuracy and data quality as evidence for doping behavior to (1) develop quality and bias assessment criteria to facilitate future systematic reviews; and (2) establish recommendations for reporting future research on doping behavior in competitive sports to facilitate better meta-analyses of doping behavior. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to identify relevant studies. Articles were included if they contained information on doping prevalence of any kind in competitive sport, regardless of the methodology and without time limit. Through an iterative process, we simultaneously developed a set of assessment criteria; and used these to assess the studies for data quality on doping prevalence, potential bias and reporting. RESULTS One-hundred and five studies, published between 1975 and 2019,were included. Doping prevalence rates in competitive sport ranged from 0 to 73% for doping behavior with most falling under 5%. To determine prevalence, 89 studies used self-reported survey data (SRP) and 17 used sample analysis data (SAP) to produce evidence for doping prevalence (one study used both SRP and SAP). In total, studies reporting athletes totaled 102,515 participants, (72.8% men and 27.2% women). Studies surveyed athletes in 35 countries with 26 involving athletes in the United States, while 12 studies examined an international population. Studies also surveyed athletes from most international sport federations and major professional sports and examined international, national, and sub-elite level athletes, including youth, masters, amateur, club, and university level athletes. However, inconsistencies in data reporting prevented meta-analysis for sport, gender, region, or competition level. Qualitative syntheses were possible and provided for study type, gender, and geographical region. The quality assessment of prevalence evidence in the studies identified 20 as "High", 60 as "Moderate", and 25 as "Low." Of the 89 studies using SRP, 17 rated as "High", 52 rated as "Moderate", and 20 rated as "Low." Of the 17 studies using SAP, 3 rated as "High", 9 rated as "Moderate", and 5 rated as "Low." Examining ratings by year suggests that both the quality and quantity of the evidence for doping prevalence in published studies are increasing. CONCLUSIONS Current knowledge about doping prevalence in competitive sport relies upon weak and disparate evidence. To address this, we offer a comprehensive set of assessment criteria for studies examining doping behavior data as evidence for doping prevalence. To facilitate future evidence syntheses and meta-analyses, we also put forward "best practice" recommendations and reporting guidelines that will improve evidence quality.
Collapse
|
6
|
Di Luigi L, Pigozzi F, Sgrò P, Frati L, Di Gianfrancesco A, Cappa M. The use of prohibited substances for therapeutic reasons in athletes affected by endocrine diseases and disorders: the therapeutic use exemption (TUE) in clinical endocrinology. J Endocrinol Invest 2020; 43:563-573. [PMID: 31734891 DOI: 10.1007/s40618-019-01145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
Abstract
To protect sporting ethics and athletes' health, the World Anti-Doping Agency (WADA) produced the World Anti-Doping Code and The Prohibited List of substances and methods forbidden in sports. In accordance with the International Standards for Therapeutic Use Exemption (ISTUE), to avoid rule violations and sanctions, athletes affected by different endocrine diseases and disorders (e.g., adrenal insufficiency, diabetes, male hypogonadisms, pituitary deficit, thyroid diseases, etc.) who need to use a prohibited substance for therapeutic reasons (e.g., medical treatments, surgical procedures, clinical diagnostic investigations) must apply to their respective Anti-Doping Organizations (ADOs) to obtain a Therapeutic Use Exemption (TUE), if specific criteria are respected. The physicians who treat these athletes (i.e., endocrinologists, andrologists and diabetologists) are highly involved in these procedures and should be aware of their specific role and responsibility in applying for a TUE, and in adequately monitoring unhealthy athletes treated with prohibited substances. In this paper, the prohibited substances commonly used for therapeutic reasons in endocrine diseases and disorders (e.g., corticotropins, beta-blockers, glucocorticoids, hCG, insulin, GnRH, rhGH, testosterone, etc.), the role of physicians in the TUE application process and the general criteria used by ADO-Therapeutic Use Exemption Committees (TUECs) for granting a TUE are described.
Collapse
Affiliation(s)
- L Di Luigi
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro de Bosis 15, 00135, Rome, Italy.
- National Anti-Doping Organization Italia (NADO-Italia), Rome, Italy.
| | - F Pigozzi
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - P Sgrò
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro de Bosis 15, 00135, Rome, Italy
| | - L Frati
- National Anti-Doping Organization Italia (NADO-Italia), Rome, Italy
- Mediterranean Neurology Institute (NEUROMED)-I.R.C.C.S, Pozzilli, Isernia, Italy
| | - A Di Gianfrancesco
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma "Foro Italico", Piazza Lauro de Bosis 15, 00135, Rome, Italy
- National Anti-Doping Organization Italia (NADO-Italia), Rome, Italy
| | - M Cappa
- National Anti-Doping Organization Italia (NADO-Italia), Rome, Italy
- Unit of Endocrinology, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
7
|
Makhova AA, Shikh EV, Bulko TV, Sizova ZM, Shumyantseva VV. The influence of taurine and L-carnitine on 6 β-hydroxycortisol/cortisol ratio in human urine of healthy volunteers. Drug Metab Pers Ther 2019; 34:dmpt-2019-0013. [PMID: 31603853 DOI: 10.1515/dmpt-2019-0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
Background Cytochrome P450s (CYPs, EC 1.14.14.1) are the main enzymes of drug metabolism. The functional significance of CYPs also includes the metabolism of foreign chemicals and endogenic biologically active compounds. The CYP3A4 isoform contributes to the metabolism of about half of all marketed medicinal preparations. The aim of this study was to investigate the effects of two biologically active compounds: 2-aminoethane-sulfonic acid (taurine) and 3-hydroxy-4-trimethylaminobutyrate (L-carnitine) on urinary 6β-hydroxycortisol/cortisol (6β-OHC/cortisol) metabolic ratio as a biomarker of the CYP3A4 activity of healthy volunteers. Taurine is used for the treatment of chronic heart failure and liver disease. Cardiologists, nephrologists, neurologists, gerontologists in addition to the main etiopathogenetic therapies, use L-carnitine. The quantification of the 6β-OHC/cortisol metabolic ratio as a biomarker of CYP3A4 activity in human urine was used for the assessment of CYP3A4 catalytic activity as a non-invasive test. Methods The study included 18 healthy male volunteers (aged from 18 to 35 years old). The volunteers took taurine in a dose of 500 mg twice a day or L-carnitine in a dose of 2.5 mL 3 times a day for 14 consecutive days. The test drug was given 20 min before meals. The collection of urine samples was performed before and after 3, 7, 10, and 14 days after taurine intake. The metabolic ratio of 6β-OHC/cortisol in morning spot urine samples was studied by the liquid chromatography/mass spectroscopy (LC/MS) method. Results The ratio of 6-6β-OHC/cortisol was used as a biomarker to study the taurine and L-carnitine influence on CYP3A4 metabolism of cortisol. The ratio of urinary 6β-OCH/cortisol in the morning urine samples of volunteers before the beginning of taurine therapy (baseline ratio) was 2.71 ± 0.2. Seven days after the administration of taurine in a dose of 500 mg twice a day, the 6β-OCH/cortisol ratio was 3.3 ± 0.2, which indicated the increased catalytic activity of CYP3A4 towards cortisol. As for the L-carnitine supplementation, analysis of the 6β-OCH/cortisol ratio in the urine for 14 days did not show any significant changes in this baseline ratio, indicating the lack of L-carnitine influence on the catalytic activity of CYP3A4 to cortisol. Conclusions The results obtained demonstrated the influence of taurine on 6β-OCH/cortisol metabolic ratio as a biomarker of CYP3A4 catalytic activity to cortisol. L-carnitine did not affect the activity of CYP3A4. The lack of a clinically meaningful effect of L-carnitine was established.
Collapse
Affiliation(s)
- Anna A Makhova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Eugenia V Shikh
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Zhanna M Sizova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | |
Collapse
|
8
|
Faiss R, Saugy J, Saugy M. Fighting Doping in Elite Sports: Blood for All Tests! Front Sports Act Living 2019; 1:30. [PMID: 33344954 PMCID: PMC7739585 DOI: 10.3389/fspor.2019.00030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
In the fight against doping, detection of doping substances in biological matrices is paramount. Analytical possibilities have evolved and sanctioning a doping scenario by detecting forbidden bioactive compounds circulating unmodified in blood is nowadays very attractive. In addition, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) a decade ago as a new paradigm inferring the use of prohibited substances or methods through longitudinal profiling, or serial analyses of indirect biomarkers of doping, to be both scientifically and legally robust. After the introduction in 2008 of an hematological module (i.e., based on variations of blood variables) aiming to identify enhancement of oxygen transport and any form of blood transfusion or manipulation, a urinary steroidal module was additionally introduced in 2014 composed of concentrations and ratios of various endogenously produced steroidal hormones. Some evidence tends to discredit steroid profiles obtained from urine analyses to detect the use of endogenous androgenic anabolic steroids (EAAS), when administered exogenously, due to high rates of false negatives with short half-life and topical formulations rendering profile alteration only minimal or equivocal. On the other hand, steroid hormones quantification in blood showed a promising ability to detect testosterone doping and interesting complementarities to the ABP thanks to the most recent analytical techniques (UHPLC-HRMS or/and MS/MS). This perspective article explores the opportunities of blood samples to monitor not only hematological but also steroid profiles in elite athletes.
Collapse
Affiliation(s)
- Raphael Faiss
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Jonas Saugy
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| | - Martial Saugy
- REDs, Research and Expertise in Antidoping Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
McDuff D, Stull T, Castaldelli-Maia JM, Hitchcock ME, Hainline B, Reardon CL. Recreational and ergogenic substance use and substance use disorders in elite athletes: a narrative review. Br J Sports Med 2019; 53:754-760. [PMID: 31097457 DOI: 10.1136/bjsports-2019-100669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Substances from various classes may be used for recreational purposes, self-treatment or to boost performance. When substance use shifts from occasional to regular, heavy or hazardous use, positive and negative effects can develop that vary by substance class and athlete. Regular use of recreational or performance enhancing substances can lead to misuse, sanctions or use disorders. OBJECTIVE To review the prevalence, patterns of use, risk factors, performance effects and types of intervention for all classes of recreational and performance enhancing substances in elite athletes by sport, ethnicity, country and gender. METHODS A comprehensive search was conducted to identify studies that compared the prevalence and patterns of substance use, misuse and use disorders in elite athletes with those of non-athletes and provided detailed demographic and sport variations in reasons for use, risk factors and performance effects for each main substance class. RESULTS Alcohol, cannabis, tobacco (nicotine) and prescribed opioids and stimulants are the most commonly used substances in elite athletes, but generally used at lower rates than in non-athletes. In contrast, use/misuse rates for binge alcohol, oral tobacco, non-prescription opioids and anabolic-androgenic steroids are higher among athletes than non-athletes, especially in power and collision sports. Cannabis/cannabinoids seem to have replaced nicotine as the second most commonly used substance. CONCLUSIONS Substance use in elite athletes varies by country, ethnicity, gender, sport and competitive level. There are no studies on substance use disorder prevalence in elite male and female athletes and few studies with direct comparison groups.
Collapse
Affiliation(s)
- David McDuff
- Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA .,MD Sports Performance, Ellicott, Maryland, USA
| | - Todd Stull
- Athletics, University of Nebraska-Lincoln University Health Center, Lincoln, Nebraska, USA
| | - João Mauricio Castaldelli-Maia
- Department of Psychiatry, Medical School, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience, Medical School, Fundação do ABC, Santo André, Brazil
| | - Mary E Hitchcock
- Ebling Library for the Health Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian Hainline
- National Collegiate Athletic Association (NCAA), Indianapolis, Indiana, USA
| | - Claudia L Reardon
- Department of Psychiatry, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Mental health in elite athletes: International Olympic Committee consensus statement (2019). Br J Sports Med 2019; 53:667-699. [PMID: 31097450 DOI: 10.1136/bjsports-2019-100715] [Citation(s) in RCA: 449] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 11/03/2022]
Abstract
Mental health symptoms and disorders are common among elite athletes, may have sport related manifestations within this population and impair performance. Mental health cannot be separated from physical health, as evidenced by mental health symptoms and disorders increasing the risk of physical injury and delaying subsequent recovery. There are no evidence or consensus based guidelines for diagnosis and management of mental health symptoms and disorders in elite athletes. Diagnosis must differentiate character traits particular to elite athletes from psychosocial maladaptations.Management strategies should address all contributors to mental health symptoms and consider biopsychosocial factors relevant to athletes to maximise benefit and minimise harm. Management must involve both treatment of affected individual athletes and optimising environments in which all elite athletes train and compete. To advance a more standardised, evidence based approach to mental health symptoms and disorders in elite athletes, an International Olympic Committee Consensus Work Group critically evaluated the current state of science and provided recommendations.
Collapse
|
11
|
Thevis M, Kuuranne T, Geyer H. Annual banned-substance review: Analytical approaches in human sports drug testing. Drug Test Anal 2019; 11:8-26. [DOI: 10.1002/dta.2549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| | - Tiia Kuuranne
- Swiss Laboratory for Doping Analyses; University Center of Legal Medicine, Genève and Lausanne, Centre Hospitalier Universitaire Vaudois and University of Lausanne; Epalinges Switzerland
| | - Hans Geyer
- Center for Preventive Doping Research - Institute of Biochemistry; German Sport University Cologne; Cologne Germany
- European Monitoring Center for Emerging Doping Agents; Cologne Germany
| |
Collapse
|
12
|
Basaria S. Use of performance-enhancing (and image-enhancing) drugs: A growing problem in need of a solution. Mol Cell Endocrinol 2018; 464:1-3. [PMID: 29426019 DOI: 10.1016/j.mce.2018.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shehzad Basaria
- Section of Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
13
|
Souza Anselmo C, Sardela VF, Matias BF, Carvalho AR, Sousa VP, Pereira HMG, Aquino Neto FR. Is zebrafish
(
Danio rerio
)
a tool for human‐like metabolism study? Drug Test Anal 2017; 9:1685-1694. [DOI: 10.1002/dta.2318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Carina Souza Anselmo
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Vinicius Figueiredo Sardela
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Bernardo Fonseca Matias
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Amanda Reis Carvalho
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Valeria Pereira Sousa
- Federal University of Rio de Janeiro, Faculty of PharmacyDepartment of Drugs and Pharmaceutics Av. Carlos Chagas Filho, 373, bloco Bss, 36 ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐170 Brazil
| | - Henrique Marcelo Gualberto Pereira
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| | - Francisco Radler Aquino Neto
- Federal University of Rio de Janeiro, Institute of Chemistry, LBCD – LADETEC Av. Horácio Macedo, 1281, bloco C ‐ Cidade Universitária, Rio de Janeiro ‐ RJ 21941‐598 Brazil
| |
Collapse
|