1
|
Vitale F, Cacciottola L, Camboni A, Houeis L, Donnez J, Dolmans MM. Assessing the effect of adipose-tissue-derived stem cell conditioned medium on follicles and stromal cells in bovine ovarian tissue culture. Reprod Biomed Online 2024; 49:103938. [PMID: 38759499 DOI: 10.1016/j.rbmo.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 05/19/2024]
Abstract
RESEARCH QUESTION Does adipose-tissue-derived stem cell conditioned medium (ASC-CM) supplementation enhance follicle and stromal cell outcomes in vitro? DESIGN Bovine ovaries (n = 8) were sectioned and cultured in vitro for 8 days in two different groups: (i) standard culture (OT Ctrl D8); and (ii) culture with ASC-CM supplementation (OT + CM D8). Half of the culture medium was replaced every other day, and stored to measure the production of oestradiol. Follicle classification was established using haematoxylin and eosin staining. Follicle and stromal cell DNA fragmentation was assessed by TUNEL assays, while growth differentiation factor-9 (GDF-9) staining served as a marker of follicle quality. Additionally, three factors, namely vascular endothelial growth factor (VEGF), interleukin 6 (IL-6) and transforming growth factor beta 1 (TGF-β1), were evaluated in ASC-CM in order to appraise the potential underlying mechanisms of action of ASC. RESULTS The OT + CM D8 group showed a significantly higher proportion of secondary follicles (P = 0.02) compared with the OT Ctrl D8 group. The OT + CM D8 group also demonstrated significantly lower percentages of TUNEL-positive follicles (P = 0.014) and stromal cells (P = 0.001) compared with the OT Ctrl D8 group. Furthermore, follicles in the OT + CM D8 group exhibited a significant increase (P = 0.002) in expression of GDF-9 compared with those in the OT Ctrl D8 group, and oestradiol production was significantly higher (P = 0.04) in the OT + CM D8 group. All studied factors were found to be present in ASC-CM. VEGF and IL-6 were the most widely expressed factors, while TGF-β1 showed the lowest expression. CONCLUSIONS Addition of ASC-CM to culture medium enhances follicle survival, development and oestradiol production, and promotes the viability of stromal cells. VEGF, IL-6 and TGF-β1 could be paracrine mediators underlying the beneficial effects.
Collapse
Affiliation(s)
- Francisco Vitale
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Luciana Cacciottola
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Alessandra Camboni
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Pathology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Lara Houeis
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Donnez
- Société de Recherche pour l'Infertilité, Brussels, Belgium; Professor Em, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Madeleine Dolmans
- Gynaecology Research Unit, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; Gynaecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| |
Collapse
|
2
|
Liu S, Zhang Y, Luo Y, Liu J. Traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine. J Diabetes 2024; 16:e13545. [PMID: 38599852 PMCID: PMC11006621 DOI: 10.1111/1753-0407.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 04/12/2024] Open
Abstract
Although pancreas and islet cell transplantation are the only ways to prevent the late complications of insulin-dependent diabetes, a shortage of donors is a major obstacle to tissue and organ transplantation. Stem cell therapy is an effective treatment for diabetes and other pancreatic-related diseases, which can be achieved by inducing their differentiation into insulin-secreting cells. The liver is considered an ideal source of pancreatic cells due to its similar developmental origin and strong regenerative ability as the pancreas. This article reviews the traditional and emerging strategies using hepatocytes for pancreatic regenerative medicine and evaluates their advantages and challenges. Gene reprogramming and chemical reprogramming technologies are traditional strategies with potential to improve the efficiency and specificity of cell reprogramming and promote the transformation of hepatocytes into islet cells. At the same time, organoid technology, as an emerging strategy, has received extensive attention. Biomaterials provide a three-dimensional culture microenvironment for cells, which helps improve cell survival and differentiation efficiency. In addition, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing technology has brought new opportunities and challenges to the development of organoid technology.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YuYing Zhang
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - YunFei Luo
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - JianPing Liu
- Department of Metabolism and Endocrinology, the Second Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
3
|
Abadpour S, Niemi EM, Orrhult LS, Hermanns C, de Vries R, Nogueira LP, Haugen HJ, Josefsen D, Krauss S, Gatenholm P, van Apeldoorn A, Scholz H. Adipose-Derived Stromal Cells Preserve Pancreatic Islet Function in a Transplantable 3D Bioprinted Scaffold. Adv Healthc Mater 2023; 12:e2300640. [PMID: 37781993 PMCID: PMC11469278 DOI: 10.1002/adhm.202300640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.
Collapse
Affiliation(s)
- Shadab Abadpour
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
| | - Essi M. Niemi
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Vascular SurgeryAker HospitalOslo University HospitalOslo0586Norway
| | - Linnea Strid Orrhult
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
| | - Carolin Hermanns
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Rick de Vries
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | | | | | - Dag Josefsen
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| | - Stefan Krauss
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Department of Immunology and Transfusion MedicineOslo University HospitalOslo0372Norway
| | - Paul Gatenholm
- 3D Bioprinting CenterWWSCDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyGothenburg41296Sweden
- CELLHEAL ASSandvika1337Norway
| | - Aart van Apeldoorn
- MERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229The Netherlands
| | - Hanne Scholz
- Department of Transplant MedicineOslo University HospitalOslo0372Norway
- Institute for Surgical ResearchOslo University HospitalOslo0372Norway
- Hybrid Technology Hub – Centre of ExcellenceInstitute of Basic Medical SciencesUniversity of OsloOslo0372Norway
- Section for Cellular TherapyRadiumhospitaletOslo University HospitalOslo0379Norway
| |
Collapse
|
4
|
Ahmadi F, Lotfi AS, Navaei-Nigjeh M, Kadivar M. Trimetazidine Preconditioning Potentiates the Effect of Mesenchymal Stem Cells Secretome on the Preservation of Rat Pancreatic Islet Survival and Function In Vitro. Appl Biochem Biotechnol 2023; 195:4796-4817. [PMID: 37184724 DOI: 10.1007/s12010-023-04532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.
Collapse
Affiliation(s)
- Fariborz Ahmadi
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Navarro Chica CE, Qin T, Pinheiro-Machado E, de Haan BJ, Faas M, Smink AM, Sierra L, López BL, de Vos P. Species-dependent impact of immunosuppressive squalene-gusperimus nanoparticles and adipose-derived stem cells on isolated human and rat pancreatic islets. Islets 2022; 14:164-183. [PMID: 35838041 PMCID: PMC9291694 DOI: 10.1080/19382014.2022.2100191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Transplantation of pancreatic islets is a promising approach to controlling glucose levels in type 1 diabetes mellitus (T1DM), but islet survival is still limited. To overcome this, islet co-culture with mesenchymal stromal cells (MSCs) together with safe immunosuppressive agents like squalene-gusperimus nanoparticles (Sq-GusNPs) may be applied. This could support islet survival and engraftment. Here, we studied how Sq-GusNPs and adipose-derived stem cells (ASCs) influence islets response under pro-inflammatory conditions. Through qRT-PCR, we studied the expression of specific genes at 24 hours in human and rat islets and ASCs in co-culture under indirect contact with or without treatment with Sq-GusNPs. We characterized how the response of islets and ASCs starts at molecular level before impaired viability or function is observed and how this response differs between species. Human islets and ASCs responses showed to be principally influenced by NF-κB activation, whereas rat islet and ASCs responses showed to be principally mediated by nitrosative stress. Rat islets showed tolerance to inflammatory conditions due to IL-1Ra secretion which was also observed in rat ASCs. Human islets induced the expression of cytokines and chemokines with pro-angiogenic, tissue repair, and anti-apoptotic properties in human ASCs under basal conditions. This expression was not inhibited by Sq-GusNPs. Our results showed a clear difference in the response elicited by human and rat islets and ASCs in front of an inflammatory stimulus and Sq-GusNPs. Our data support the use of ASCs and Sq-GusNP to facilitate engraftment of islets for T1DM treatment.
Collapse
Affiliation(s)
- Carlos E. Navarro Chica
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
- CONTACT Carlos E. Navarro Chica Pathology and Medical Biology, Section of Immunoendocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9713 GZGroningen, the Netherlands
| | - Tian Qin
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Erika Pinheiro-Machado
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart J. de Haan
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M.M. Faas
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ligia Sierra
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Betty L. López
- Grupo de Investigación Ciencia de los Materiales, Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Paul de Vos
- Department of Pathology and Medical Biology, Section of Immunoendocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|