1
|
Liu B, Cai Z, Wang Y, Liu X, Zhang B, Zheng Q, Li J, Li C, Cui Y, Lv P, Yang D. Transglutaminase 2 regulates endothelial cell calcification via IL-6-mediated autophagy. Front Pharmacol 2024; 15:1393534. [PMID: 39654623 PMCID: PMC11625581 DOI: 10.3389/fphar.2024.1393534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction Endothelial cell (EC) calcification is an important marker of atherosclerotic calcification. ECs play a critical role not only in atherogenesis but also in intimal calcification, as they have been postulated to serve as a source of osteoprogenitor cells that initiate this process. While the role of transglutaminase 2 (TG2) in cellular differentiation, survival, apoptosis, autophagy, and cell adhesion is well established, the mechanism underlying the TG2-mediated regulation of EC calcification is yet to be fully elucidated. Methods The TG2 gene was overexpressed or silenced by using siRNA and recombinant adenovirus. RT-PCR and WB were used to analyze the relative expression of target genes and proteins. 5-BP method analyzed TG2 activity. mCherry-eGFP-LC3 adenovirus and transmission electron microscopy analyzed EC autophagy level. Calcium concentrations were measured by using a calcium colorimetric assay kit. Alizarin red S staining assay analyzed EC calcification level. Elisa analyzed IL-6 level. Establishing EC calcification model by using a calcification medium (CM). Results Our findings demonstrated that CM increased TG2 activity and expression, which activated the NF-κB signaling pathway, and induced IL-6 autocrine signaling in ECs. Furthermore, IL-6 activated the JAK2/STAT3 signaling pathway to suppress cell autophagy and promoted ECs calcification. Discussion ECs are not only critical for atherogenesis but also believed to be a source of osteoprogenitor cells that initiate intimal calcification. Previous research has shown that TG2 plays an important role in the development of VC, but the mechanism by which it exerts this effect is not yet fully understood. Our results demonstrated that TG2 forms complexes with NF-κB components inhibition of autophagy promoted endothelial cell calcification through EndMT. Therefore, our research investigated the molecular mechanism of EC calcification, which can provide new insights into the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Cai
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Wang
- The First Department of Ocular Fundus Diseases, Zhengzhou Second Hospital, Zhengzhou, Henan, China
| | - Xinye Liu
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Zhang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Zheng
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingye Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Cien Li
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- Translational Medical Center, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Pengju Lv
- Department of clinical laboratory, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Dongwei Yang
- Department of Cardiology, Zhengzhou Central Hospital, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Jia R, Huang X, Yang J, Wang L, Li J, Li Y, Gun S, Yan Z, Wang P, Yang Q. Gender-Specific DNA Methylation Profiles Associated with Adult Weight in Hezuo Pigs. Int J Mol Sci 2024; 25:11488. [PMID: 39519040 PMCID: PMC11547036 DOI: 10.3390/ijms252111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The Hezuo pig, an important native Tibetan breed in China, exhibits differences in adult body weight, with females typically heavier than males. The underlying mechanisms for this disparity remain unclear. DNA methylation changes are known to influence animal growth and development and regulate Hezuo pig growth by altering gene expression related to these processes, thus differentially affecting adult body weight between genders. This study conducted DNA methylation analysis and expression profiling using pituitary tissues from male and female Hezuo pigs at 3 and 8 months old (M3M, M3F, M8M, and M8F). In total 346, 795, 371, and 839 differentially methylated genes (DMGs) were identified in the M3M vs. M3F, M3F vs. M8F, M3M vs. M8M, and M8M vs. M8F groups, respectively. The comparative analysis of differentially methylated regions (DMRs) genes and DEGs (differentially expressed regions) revealed that key genes involved in growth, hormone secretion, and the hypothalamic-pituitary-gonadal axis are primarily enriched in signaling pathways such as PI3K-Akt, Hippo, and adrenergic. Further analysis combining methylation and transcriptomics identified five candidate methylated genes (CCL2, MYL2, GST, CTSH, and MCH) linked to adult body weight in Hezuo pigs. Additionally, the correlation analysis suggested that these genes influence growth and development in boars and sows by regulating the secretion and synthesis of related hormones, leading to heavier weights in females. In conclusion, variations in adult body weight between male and female pigs may stem from the impact of DNA methylation on gene expression related to growth and development. These findings offer new insights into the regulatory mechanisms of DNA methylation during weight gain in Hezuo pigs.
Collapse
Affiliation(s)
- Rui Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
- Gansu Innovations Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Longlong Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Yao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
- Gansu Innovations Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (R.J.); (X.H.); (J.Y.); (L.W.); (J.L.); (Y.L.); (S.G.); (Z.Y.); (P.W.)
- Gansu Innovations Center for Swine Production Engineering and Technology, Lanzhou 730070, China
| |
Collapse
|
3
|
Lin S, Ma H, Zhang S, Fan W, Shen C, Chen J, Jin M, Li K, He Q. The combination of paeonol, diosmetin-7- O- β- D-glucopyranoside, and 5-hydroxymethylfurfural from Trichosanthis pericarpium alleviates arachidonic acid-induced thrombosis in a zebrafish model. Front Pharmacol 2024; 15:1332468. [PMID: 38487165 PMCID: PMC10937350 DOI: 10.3389/fphar.2024.1332468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Trichosanthis fruit (TF) is a classic medicinal material obtained from Shandong, China. The peel of this fruit (Trichosanthis pericarpium, TP) is known to exert anti-thrombotic effects. However, the anti-thrombotic active components and mechanisms of TP have yet to be fully elucidated. Combined with zebrafish models and high-performance liquid chromatography (HPLC), this study evaluated the endogenous anti-thrombotic effects with the combination of three compounds from TP. First, we used HPLC to investigate the components in the water extract of TP. Next, we used the zebrafish model to investigate the anti-thrombotic activity of the three compound combinations by evaluating a range of indicators. Finally, the expression of related genes was detected by real-time quantitative polymerase chain reaction (qPCR). HPLC detected a total of eight components in TP water extract, with high levels of paeonol (Pae), diosmetin-7-O-β-D-glucopyranoside (diosmetin-7-O-glucoside), and 5-hydroxymethylfurfural (5-HMF). The most significant anti-thrombotic activity was detected when the Pae: diosmetin-7-O-glucoside:5-HMF ratio was 4:3:3. qPCR analysis revealed that the abnormal expression levels of f2, fga, fgb, vwf, ptgs1, and tbxas1 induced by arachidonic acid (AA) were improved. The combination of Pae, diosmetin-7-O-glucoside, and 5-HMF may alleviate AA-induced thrombosis by inhibiting the inflammatory reaction, coagulation cascade reaction, and arachidonic acid metabolism pathways.
Collapse
Affiliation(s)
- Shenghua Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Honglin Ma
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wei Fan
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chuanlin Shen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiayu Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kun Li
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| |
Collapse
|
4
|
Kompotis K, Mang GM, Hubbard J, Jimenez S, Emmenegger Y, Polysopoulos C, Hor CN, Wigger L, Hébert SS, Mongrain V, Franken P. Cortical miR-709 links glutamatergic signaling to NREM sleep EEG slow waves in an activity-dependent manner. Proc Natl Acad Sci U S A 2024; 121:e2220532121. [PMID: 38207077 PMCID: PMC10801902 DOI: 10.1073/pnas.2220532121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression that have been implicated in a plethora of neuronal processes. Nevertheless, their role in regulating brain activity in the context of sleep has so far received little attention. To test their involvement, we deleted mature miRNAs in post-mitotic neurons at two developmental ages, i.e., in early adulthood using conditional Dicer knockout (cKO) mice and in adult mice using an inducible conditional Dicer cKO (icKO) line. In both models, electroencephalographic (EEG) activity was affected and the response to sleep deprivation (SD) altered; while the rapid-eye-movement sleep (REMS) rebound was compromised in both, the increase in EEG delta (1 to 4 Hz) power during non-REMS (NREMS) was smaller in cKO mice and larger in icKO mice compared to controls. We subsequently investigated the effects of SD on the forebrain miRNA transcriptome and found that the expression of 48 miRNAs was affected, and in particular that of the activity-dependent miR-709. In vivo inhibition of miR-709 in the brain increased EEG power during NREMS in the slow-delta (0.75 to 1.75 Hz) range, particularly after periods of prolonged wakefulness. Transcriptome analysis of primary cortical neurons in vitro revealed that miR-709 regulates genes involved in glutamatergic neurotransmission. A subset of these genes was also affected in the cortices of sleep-deprived, miR-709-inhibited mice. Our data implicate miRNAs in the regulation of EEG activity and indicate that miR-709 links neuronal activity during wakefulness to brain synchrony during sleep through the regulation of glutamatergic signaling.
Collapse
Affiliation(s)
- Konstantinos Kompotis
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, ZurichCH-8057, Switzerland
| | - Géraldine M. Mang
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Jeffrey Hubbard
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sonia Jimenez
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Yann Emmenegger
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Christos Polysopoulos
- Department of Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, ZurichCH-8057, Switzerland
| | - Charlotte N. Hor
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Leonore Wigger
- Genomic Technologies Facility, Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Sébastien S. Hébert
- Centre de recherche du Centre hospitalier universitaire de Québec-Université Laval, Axe Neurosciences, Québec, QCG1V 4G2, Canada
- Département de psychiatrie et de neurosciences, Faculté de médecine, Université Laval, Québec, QCG1V 0A6, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montréal, QCH3T 1J4, Canada
- Centre de recherche, Centre hospitalier de l’Université de Montréal, Montréal, QCH2X 0A9, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montréal, QCH4J 1C5, Canada
| | - Paul Franken
- Center for Integrative Genomics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
5
|
Yu Z, Jiang X, Yin J, Han L, Xiong C, Huo Z, Xu J, Shang J, Xi K, Nong L, Huang Y, Zhou X. CK1ε drives osteogenic differentiation of bone marrow mesenchymal stem cells via activating Wnt/β-catenin pathway. Aging (Albany NY) 2023; 15:10193-10212. [PMID: 37787983 PMCID: PMC10599756 DOI: 10.18632/aging.205067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
The treatment of bone defects is a difficult problem in orthopedics. At present, the treatment mainly relies on autologous or allogeneic bone transplantation, which may lead to some complications such as foreign body rejection, local infection, pain, or numbness at the bone donor site. Local injection of conservative therapy to treat bone defects is one of the research hotspots at present. Bone marrow mesenchymal stem cells (BMSCs) can self-renew, significantly proliferate, and differentiate into various types of cells. Although it has been reported that CK1ε could mediate the Wnt/β-catenin pathway, leading to the development of the diseases, whether CK1ε plays a role in bone regeneration through the Wnt/β-catenin pathway has rarely been reported. The purpose of this study was to investigate whether CK1ε was involved in the osteogenic differentiation (OD) of BMSCs through the Wnt/β-catenin pathway and explore the mechanism. We used quantitative reverse transcription-polymerase chain reaction (qRT-qPCR), Western blots, immunofluorescence, alkaline phosphatase, and alizarin red staining to detect the effect of CK1ε on the OD of BMSCs and the Wnt/β-catenin signaling pathway. CK1ε was highly expressed in BMSCs with OD, and our study further demonstrated that CK1ε might promote the OD of BMSCs by activating DLV2 phosphorylation, initiating Wnt signaling downstream, and activating β-catenin nuclear transfer. In addition, by locally injecting a CK1ε-carrying adeno-associated virus (AAV5- CK1ε) into a femoral condyle defect rat model, the overexpression of CK1ε significantly promoted bone repair. Our data show that CK1ε was involved in the regulation of OD by mediating Wnt/β-catenin. This may provide a new strategy for the treatment of bone defects.
Collapse
Affiliation(s)
- Zhentang Yu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Yibin Integrated Traditional Chinese and Western Medicine Hospital, Yibin 644104, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Xijia Jiang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jianjian Yin
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Lei Han
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Chengwei Xiong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Zhennan Huo
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Graduate School, Dalian Medical University, Dalian 116000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jie Xu
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Jingjing Shang
- Department of Pharmacy, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
| | - Kun Xi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, Soochow University, Suzhou 215006, China
| | - Luming Nong
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Yong Huang
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| | - Xindie Zhou
- Department of Orthopedics, The Affiliated Changzhou Second People’s Hospital of Nanjing Medical University, Changzhou 213000, China
- Department of Orthopedics, Gonghe County Hospital of Traditional Chinese Medicine, Hainan Tibetan Autonomous Prefecture, Qinghai 811800, China
- Changzhou Medical Center, Nanjing Medical University, Changzhou 213000, China
| |
Collapse
|
6
|
PRKCA Promotes Mitophagy through the miR-15a-5p/PDK4 Axis to Relieve Sepsis-Induced Acute Lung Injury. Infect Immun 2023; 91:e0046522. [PMID: 36448837 PMCID: PMC9872609 DOI: 10.1128/iai.00465-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Acute lung injury (ALI) caused by sepsis is a common respiratory critical illness with high morbidity and mortality. Protein kinase C-alpha (PRKCA) plays a protective role in sepsis-induced ALI. However, the detailed molecular mechanism of PRKCA in ALI caused by sepsis is unclear. Animal and cell models of sepsis were established by cecal ligation and puncture (CLP)-surgery and lipopolysaccharide (LPS)/interferon-gamma (IFN-γ) treatment, respectively. Lentivirus transfection was used to overexpress PRKCA. H&E staining and lung injury in CLP-surgery mice were evaluated. Gene expression was evaluated using qPCR and Western blotting. The expression of TNF-α, IL-1β, and IL-6 was examined using qPCR and ELISA. The expression of LC3 and TOM20 was evaluated using immunofluorescence assays. Cell apoptosis was assessed using a flow cytometry assay. The bond between miR-15a-5p and PDK4 was confirmed by dual-luciferase reporter gene and RNA immunoprecipitation assays. In vivo and in vitro, PRKCA overexpression reduced lung injury to prompt mitophagy and inhibit the inflammatory response, ROS production, and cell apoptosis. miR-15a-5p was highly expressed in macrophages treated with LPS/IFN-γ and was negatively mediated by PRKCA. The overexpression of miR-15a-5p reduced the effects of PRKCA upregulation in macrophages. miR-15a-5p could restrain mitophagy in LPS/IFN-γ-treated macrophages by directly targeting PDK4. Furthermore, PDK4 knockdown reversed the inhibition of cell apoptosis and inflammatory factor release caused by miR-15a-5p silencing. The PRKCA/miR-15a-5p/PDK4 axis alleviated ALI caused by sepsis by promoting mitophagy and repressing anti-inflammatory response.
Collapse
|
7
|
Jiao Y, Hao L, Xia P, Cheng Y, Song J, Chen X, Wang Z, Ma Z, Zheng S, Chen T, Zhang Y, Yu H. Identification of Potential miRNA-mRNA Regulatory Network Associated with Pig Growth Performance in the Pituitaries of Bama Minipigs and Landrace Pigs. Animals (Basel) 2022; 12:3058. [PMID: 36359184 PMCID: PMC9657654 DOI: 10.3390/ani12213058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 08/27/2023] Open
Abstract
Pig growth performance is one of the criteria for judging pork production and is influenced by genotype and external environmental factors such as feeding conditions. The growth performance of miniature pigs, such as Bama minipigs, differs considerably from that of the larger body size pigs, such as Landrace pigs, and can be regarded as good models in pig growth studies. In this research, we identified differentially expressed genes in the pituitary gland of Bama minipigs and Landrace pigs. Through the pathway enrichment analysis, we screened the growth-related pathways and the genes enriched in the pathways and established the protein-protein interaction network. The RNAHybrid algorithm was used to predict the interaction between differentially expressed microRNAs and differentially expressed mRNAs. Four regulatory pathways (Y-82-ULK1/CDKN1A, miR-4334-5p-STAT3/PIK3R1/RPS6KA3/CAB39L, miR-4331-SCR/BCL2L1, and miR-133a-3p-BCL2L1) were identified via quantitative real-time PCR to detect the expression and correlation of candidate miRNAs and mRNAs. In conclusion, we revealed potential miRNA-mRNA regulatory networks associated with pig growth performance in the pituitary glands of Bama minipigs and Landrace pigs, which may help to elucidate the underlying molecular mechanisms of growth differences in pigs of different body sizes.
Collapse
Affiliation(s)
- Yingying Jiao
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Peijun Xia
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Yunyun Cheng
- Ministry of Health Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130061, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Ze Ma
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Ting Chen
- Chinese National Engineering Research Center for Breeding Swine Industry, SCAU-Alltech Research Joint Alliance, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ying Zhang
- College of Animal Science, Jilin University, Changchun 130061, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun 130061, China
| |
Collapse
|
8
|
Tao S, Yang Y, Fan Y, Chu K, Sun J, Wu Q, Wang A, Wan J, Tian H. Melatonin protects against nonylphenol caused pancreatic β-cells damage through MDM2-P53-P21 axis. Toxicol Res (Camb) 2022; 11:391-401. [PMID: 35782637 PMCID: PMC9244227 DOI: 10.1093/toxres/tfac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/07/2022] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Nonylphenol (NP) is an endocrine disrupting chemical, which widely exists in environment and can result in multiple system dysfunction. Pancreas as one of the most important organs is sensitive to NP, while the detail toxic effect is still less studied. Previously, we unveiled nonylphenol causes pancreatic damage in rats, herein, we further explore the potential mechanism and seek protection strategy in vitro. Insulinoma (INS-1) cells exposed to NP were observed to suffer oxidative stress and mitochondrial dysfunction, as reflected by the abnormal levels of reactive oxygen species, malonic dialdehyde, superoxide dismutase, Ca2+, and mitochondrial membrane potential. Melatonin (MT) was found to alleviate NP-induced mitochondrial dysfunction and oxidative stress, further inhibit apoptosis and restore pancreas function. Mechanically, MT induced the MDM2-P53-P21 signaling, which upregulated the Nrf2 signaling pathway. In summary, our study clarified NP-induced INS-1 cells mitochondrial dysfunction and oxidative stress, which could be ameliorated by MT through MDM2-P53-P21 axis.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Youjing Yang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yayun Fan
- Yancheng First People’s Hospital, Yancheng, P. R. China
| | - Kaimiao Chu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiaojiao Sun
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Wu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Aiqing Wang
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jianmei Wan
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
9
|
Teng Z, Hao L, Yang R, Song J, Wang Z, Jiao Y, Fang J, Zheng S, Ma Z, Chen X, Liu S, Cheng Y. Key pituitary miRNAs mediate the expression of pig GHRHR splice variants by regulating splice factors. Int J Biol Macromol 2022; 208:208-218. [PMID: 35306020 DOI: 10.1016/j.ijbiomac.2022.03.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
The growth hormone releasing hormone receptor (GHRHR) is well documented in organism growth and its alternative splicing may generate multiple functional GHRHR splice variants (SVs). Our previous study has demonstrated the key pituitary miRNAs (let-7e and miR-328-5p) in pig regulated the expression of GHRHR SVs by directly targeting to them. And according to recent reports, the interplay between miRNA-based silencing of mRNAs and alternative splicing of pre-mRNAs is a crucial post-transcriptional mechanism. In this study, SF3B3 and CPSF4 were firstly excavated as the splice factors that involved in the formation of GHRHR SVs mediated by let-7e and miR-328-5p through the comparation of the expression relations of GHRHR SVs, let-7e/miR-328-5p and SF3B3/CPSF4 in pituitary tissues between Landrace pigs and BaMa pigs, as well as the prediction of the target relations of let-7e/miR-328-5p with SF3B3 and/or CPSF4. SF3B3 and CPSF4 targeted by let-7e and miR-328-5p were further verified by performing dual-luciferase reporter assays and detecting the expression of target transcripts. Then the RT-PCR, RT-qPCR and Western blot assays were used to confirm SF3B3 and CPSF4 were involved in the formation of the GHRHR SVs, and in this process, let-7e and miR-328-5p mediated GHRHR SVs by regulating SF3B3 and CPSF4. Finally, the target site of SF3B3 on pre-GHRHR was on the Exon 12 to Exon14, while CPSF4 acted on the other fragments of the pre-GHRHR, which were explored by dual-luciferase reporter system preliminarily. To the best of our knowledge, this paper is the first to report the miRNAs regulate GHRHR SVs indirectly by splice factors.
Collapse
Affiliation(s)
- Zhaohui Teng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Rui Yang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yingying Jiao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Jiayuan Fang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Shuo Zheng
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Ze Ma
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Xi Chen
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Yunyun Cheng
- NHC Key Laboratory of Radiobiology, College of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
10
|
Wit JM, Joustra SD, Losekoot M, van Duyvenvoorde HA, de Bruin C. Differential Diagnosis of the Short IGF-I-Deficient Child with Apparently Normal Growth Hormone Secretion. Horm Res Paediatr 2022; 94:81-104. [PMID: 34091447 DOI: 10.1159/000516407] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/19/2022] Open
Abstract
The current differential diagnosis for a short child with low insulin-like growth factor I (IGF-I) and a normal growth hormone (GH) peak in a GH stimulation test (GHST), after exclusion of acquired causes, includes the following disorders: (1) a decreased spontaneous GH secretion in contrast to a normal stimulated GH peak ("GH neurosecretory dysfunction," GHND) and (2) genetic conditions with a normal GH sensitivity (e.g., pathogenic variants of GH1 or GHSR) and (3) GH insensitivity (GHI). We present a critical appraisal of the concept of GHND and the role of 12- or 24-h GH profiles in the selection of children for GH treatment. The mean 24-h GH concentration in healthy children overlaps with that in those with GH deficiency, indicating that the previously proposed cutoff limit (3.0-3.2 μg/L) is too high. The main advantage of performing a GH profile is that it prevents about 20% of false-positive test results of the GHST, while it also detects a low spontaneous GH secretion in children who would be considered GH sufficient based on a stimulation test. However, due to a considerable burden for patients and the health budget, GH profiles are only used in few centres. Regarding genetic causes, there is good evidence of the existence of Kowarski syndrome (due to GH1 variants) but less on the role of GHSR variants. Several genetic causes of (partial) GHI are known (GHR, STAT5B, STAT3, IGF1, IGFALS defects, and Noonan and 3M syndromes), some responding positively to GH therapy. In the final section, we speculate on hypothetical causes.
Collapse
Affiliation(s)
- Jan M Wit
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Sjoerd D Joustra
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Christiaan de Bruin
- Department of Paediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
11
|
Xiong J, Zhang H, Wang Y, Cheng Y, Luo J, Chen T, Xi Q, Sun J, Zhang Y. Rno_circ_0001004 Acts as a miR-709 Molecular Sponge to Regulate the Growth Hormone Synthesis and Cell Proliferation. Int J Mol Sci 2022; 23:ijms23031413. [PMID: 35163336 PMCID: PMC8835962 DOI: 10.3390/ijms23031413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: As a novel type of non-coding RNA with a stable closed-loop structure, circular RNA (circRNA) can interact with microRNA (miRNA) and influence the expression of miRNA target genes. However, circRNA involved in pituitary growth hormone (GH) regulation is poorly understood. Our previous study revealed protein kinase C alpha (PRKCA) as the target gene of miR-709. Currently, the expression and function of rno_circRNA_0001004 in the rat pituitary gland is not clarified; (2) Methods: In this study, both bioinformatics analysis and dual-luciferase report assays showed a target relationship between rno_circRNA_0001004 and miR-709. Furthermore, the rno_circRNA_0001004 overexpression vector and si-circ_0001004 were constructed and transfected into GH3 cells; (3) Results: We found that rno_circRNA_0001004 expression was positively correlated with the PRKCA gene and GH expression levels, while it was negatively correlated with miR-709. In addition, overexpression of rno-circ_0001004 also promoted proliferation and relieved the inhibition of miR-709 in GH3 cells; (4) Conclusions: Our findings show that rno_circ_0001004 acts as a novel sponge for miR-709 to regulate GH synthesis and cell proliferation, and are the first case of discovery of the regulatory role of circRNA_0001004 in pituitary GH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiajie Sun
- Correspondence: (J.S.); (Y.Z.); Tel.: +86-139-2515-8841 (J.S.); +86-135-2780-3004 (Y.Z.)
| | - Yongliang Zhang
- Correspondence: (J.S.); (Y.Z.); Tel.: +86-139-2515-8841 (J.S.); +86-135-2780-3004 (Y.Z.)
| |
Collapse
|
12
|
Wang C, Wang S, Liu S, Cheng Y, Geng H, Yang R, Feng T, Lu G, Sun X, Song J, Hao L. Synonymous Mutations of Porcine Igf1r Extracellular Domain Affect Differentiation and Mineralization in MC3T3-E1 Cells. Front Cell Dev Biol 2020; 8:623. [PMID: 32754602 PMCID: PMC7381325 DOI: 10.3389/fcell.2020.00623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Owing to the wide application of miniature pigs in biomedicine, the formation mechanism of its short stature must be elucidated. The insulin-like growth factor 1 receptor (IGF-1R), which receives signals through the extracellular domain (ECD) binding with ligands, is crucial in regulating cell growth and bone matrix mineralization. In this study, two haplotypes of Igf1r with four synonymous mutations in the coding sequences of IGF-1R ECD between large pigs (LP) and Bama pigs (BM) were stably expressed in the Igf1r-knockout MC3T3-E1 cells and named as MC3T3-LP cells (LP group) and MC3T3-BM cells (BM group), respectively. IGF-1R expression was lower in the BM group than in the LP group both in terms of transcription and translation levels, and IGF-1R expression inhibited cell proliferation. In addition, IGF-1R expression in the BM group promoted early-stage differentiation but delayed late-stage differentiation, which not only suppressed the expression of bone-related factors but also reduced alkaline phosphatase activity and calcium deposition. Moreover, different haplotypes of Igf1r changed the stability and conformation of the protein, further affecting the binding with IGF-1. Our data indicated that the four synonymous mutations of IGF1R ECD encoded by affect gene transcription and translation, thereby further leading to differences in the downstream pathways and functional changes of osteoblasts.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Hongwei Geng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Rui Yang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Sciences, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Xiaotong Sun
- College of Animal Sciences, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Sciences, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Sciences, Jilin University, Changchun, China
| |
Collapse
|