1
|
Avalo-Zuluaga JH, Viatela Ramírez S, Baptista-de-Souza D, Canto-de-Souza L, Rico JL, Nunes-de-Souza RL. Witness stress promotes age and sex-dependent behavioral and neurofunctional alterations in the amygdaloid complex and dorsal hippocampus in mice. Physiol Behav 2025; 299:114966. [PMID: 40414475 DOI: 10.1016/j.physbeh.2025.114966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/28/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
Humans are frequently exposed to stress, with social stress being a predominant factor, either directly experienced or observed. Chronic stress is linked to psychiatric disorders such as depression and anxiety and induces morpho-functional changes in brain areas like the amygdaloid complex and dorsal hippocampus, which influence emotional responses. This study examined the impact of witness social defeat stress (WSDS) on depression-like behaviors and neural activation in Swiss-Webster mice, considering variables like sex and life stage. Two experiments were conducted: Experiment 1 assessed the effects of WSDS in adulthood (58-60 postnatal days [PND]) on behaviors such as coat state, nest building, novel object exploration, and body weight gain, as well as neuronal activation in the amygdaloid complex and dorsal hippocampus. Experiment 2 evaluated the long-term effects of early WSDS exposure (21 PND) on these same parameters, reassessing mice at 58-62 PND. Results showed sex-dependent behavioral changes, including altered novel object interaction, coat and nest quality, and decreased ΔFosB Protein Expression in the amygdaloid complex and hippocampus, with age and sex influencing the stress response. WSDS in adulthood produced smaller behavioral changes, with some signs of resilience particularly in females, while early exposure to this type of stress led to more pronounced effects. This study highlights the complexity of stress responses, suggesting that the intensity and timing of stress, along with sex, play critical roles in shaping behavioral outcomes.
Collapse
Affiliation(s)
- Julian Humberto Avalo-Zuluaga
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil.
| | - Stephany Viatela Ramírez
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil.
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil.
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil.
| | - Javier Leonardo Rico
- Laboratory of Animal Behavior, Faculty of Psychology, Fundación Universitaria Konrad Lorenz, Bogotá, Colombia.
| | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, University Estadual Paulista, UNESP, Araraquara, Brazil; Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar-UNESP, São Carlos, Brazil.
| |
Collapse
|
2
|
Nguyen J, Shimizu K, Zlotnik V, Nguyen MN, Toro SD, Nguyen MT, Ronquillo J, Halladay LR. Genetic diversity shapes behavioral outcomes and reveals sex differences in mice exposed to early life stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.08.647890. [PMID: 40291693 PMCID: PMC12027074 DOI: 10.1101/2025.04.08.647890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Understanding how genetic variability shapes responses to environmental and developmental factors is critical for advancing translational neuroscience. However, most preclinical studies rely on inbred mouse strains that do not capture the genetic complexity of human populations. One key area of translational research focuses on identifying the neural and behavioral consequences of early life trauma. Rodent models of childhood neglect, such as maternal separation with early weaning (MSEW), have been used in isogenic mouse strains like C57BL/6J (B6) to identify behavioral domains and neural loci of deficits stemming from exposure to MSEW. To understand how genetic diversity may contribute to the outcomes produced by MSEW, and thus inform future studies on the topic, we utilized the Jackson Laboratory Diversity Outbred (DO) line, a population derived from eight founder strains that exhibit broad genetic and phenotypic heterogeneity. We first compared MSEW effects on social behavior in DO mice versus B6 mice, because we have previously found social behavior deficits in B6 mice with a history of MSEW. Indeed, we established that MSEW incited social motivation deficits in DO mice, in a sex-specific manner. We then expanded our investigation of DO mice to test MSEW-related changes in anxiety-like behavior, fear learning and expression, and reward-seeking. Results revealed that MSEW produces distinct, sex-specific phenotypes: female DO mice displayed reduced social motivation and elevated anxiety-like behavior, while male DO mice showed attenuated CS-evoked fear expression and diminished reward-seeking behavior. Additionally, immunohistochemical analysis revealed increased Fos expression in the paraventricular nucleus of the hypothalamus (PVN) in MSEW-exposed DO mice, both at baseline and following acute stress. These findings highlight the importance of incorporating genetically diverse models to better capture the nuances of early life adversity-related outcomes relevant to human populations.
Collapse
|
3
|
Algaidi SA. Chronic stress-induced neuroplasticity in the prefrontal cortex: Structural, functional, and molecular mechanisms from development to aging. Brain Res 2025; 1851:149461. [PMID: 39864644 DOI: 10.1016/j.brainres.2025.149461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
Chronic stress profoundly affects the structure and function of the prefrontal cortex (PFC), a brain region critical for executive functions and emotional regulation. This review synthesizes current knowledge on stress-induced PFC plasticity, encompassing structural, functional, and molecular changes. We examine how chronic stress leads to dendritic atrophy, spine loss, and alterations in neuronal connectivity within the PFC, particularly affecting the medial PFC. These structural changes are accompanied by disruptions in neurotransmitter systems, most notably glutamatergic and GABAergic signaling, and alterations in synaptic plasticity mechanisms. At the molecular level, we discuss the intricate interplay between stress hormones, neurotrophic factors, and epigenetic modifications that underlie these changes. The review highlights the significant behavioral and cognitive consequences of stress-induced PFC plasticity, including impairments in working memory, decision-making, and emotional regulation, which may contribute to the development of stress-related psychiatric disorders. We also explore individual differences in stress susceptibility, focusing on sex-specific effects and age-dependent variations in stress responses. The role of estrogens in conferring stress resilience in females and the unique vulnerabilities of the developing and aging PFC are discussed. Finally, we consider potential pharmacological and non-pharmacological interventions that may mitigate or reverse stress-induced changes in the PFC. The review concludes by identifying key areas for future research, including the need for more studies on the reversibility of stress effects and the potential of emerging technologies in unraveling the complexities of PFC plasticity. This comprehensive overview underscores the critical importance of understanding stress-induced PFC plasticity for developing more effective strategies to prevent and treat stress-related mental health disorders.
Collapse
Affiliation(s)
- Sami Awda Algaidi
- Department of Basic Medical Sciences Faculty of Medicine Taibah University Saudi Arabia.
| |
Collapse
|
4
|
Cogo PR, Moadab G, Bliss-Moreau E, Pittet F. Prenatal Zika Virus Exposure Alters the Interaction Between Affective Processing and Decision-Making in Juvenile Rhesus Macaques (Macaca mulatta). Dev Psychobiol 2024; 66:e70002. [PMID: 39508455 DOI: 10.1002/dev.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Many challenges during pregnancy can disrupt fetal development and have varying consequences on the subsequent psychological development of infants. Notably, exposure to infectious pathogens during fetal development, such as those encountered in viral pandemics, has been associated with persistent developmental consequences on infants' brains and behavior. However, the underlying mechanisms and the degree to which neural plasticity over infancy may accommodate fetal insults remain unclear. To address this gap, we investigated the interaction between affective processing and decision-making in a cohort of rhesus monkey juveniles exposed to Zika virus (ZIKV) during fetal development, a pathogen known to profoundly disrupt central nervous system development. Ten juveniles exposed to ZIKV during their fetal development and nine procedure-matched controls (CONs) completed a judgment bias task with and without a negative mood induction. Although ZIKV exposure did not impact the monkeys' decision-making processes during the task or the magnitude of their behavioral responses to the mood induction procedure, it did alter the influence of mood induction on decision-making. Although CON monkeys exhibited significantly more conservative decision-making following negative mood induction, the decision-making of Zika-exposed monkeys remained consistent among conditions. These findings suggest that fetal exposure to ZIKV impacts the neural systems involved in integrating affective and cognitive information, with potential long-term implications for learning, memory, and emotion regulation.
Collapse
Affiliation(s)
- Patrick R Cogo
- California National Primate Research Center, University of California, Davis, California, USA
| | - Gilda Moadab
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, Davis, California, USA
- Department of Psychology, University of California, Davis, California, USA
| | - Florent Pittet
- California National Primate Research Center, University of California, Davis, California, USA
| |
Collapse
|
5
|
Turner MB, Dalmasso C, Loria AS. The adipose tissue keeps the score: priming of the adrenal-adipose tissue axis by early life stress predisposes women to obesity and cardiometabolic risk. Front Endocrinol (Lausanne) 2024; 15:1481923. [PMID: 39493777 PMCID: PMC11527639 DOI: 10.3389/fendo.2024.1481923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Adverse Childhood Experiences (ACEs) refer to early life stress events, including abuse, neglect, and other psychosocial childhood traumas that can have long-lasting effects on a wide range of physiological functions. ACEs provoke sex-specific effects, whereas women have been shown to display a strong positive correlation with obesity and cardiometabolic disease. Notably, rodent models of chronic behavioral stress during postnatal life recapitulate several effects of ACEs in a sex-specific fashion. In this review, we will discuss the potential mechanisms uncovered by models of early life stress that may explain the greater susceptibility of females to obesity and metabolic risk compared with their male counterparts. We highlight the early life stress-induced neuroendocrine shaping of the adrenal-adipose tissue axis as a primary event conferring sex-dependent heightened sensitivity to obesity.
Collapse
Affiliation(s)
| | | | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
6
|
Mbiydzenyuy NE, Joanna Hemmings SM, Shabangu TW, Qulu-Appiah L. Exploring the influence of stress on aggressive behavior and sexual function: Role of neuromodulator pathways and epigenetics. Heliyon 2024; 10:e27501. [PMID: 38486749 PMCID: PMC10937706 DOI: 10.1016/j.heliyon.2024.e27501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024] Open
Abstract
Stress is a complex and multifaceted phenomenon that can significantly influence both aggressive behavior and sexual function. This review explores the intricate relationship between stress, neuromodulator pathways, and epigenetics, shedding light on the various mechanisms that underlie these connections. While the role of stress in both aggression and sexual behavior is well-documented, the mechanisms through which it exerts its effects are multifarious and not yet fully understood. The review begins by delving into the potential influence of stress on the Hypothalamic-Pituitary-Adrenal (HPA) axis, glucocorticoids, and the neuromodulators involved in the stress response. The intricate interplay between these systems, which encompasses the regulation of stress hormones, is central to understanding how stress may contribute to aggressive behavior and sexual function. Several neuromodulator pathways are implicated in both stress and behavior regulation. We explore the roles of norepinephrine, serotonin, oxytocin, and androgens in mediating the effects of stress on aggression and sexual function. It is important to distinguish between general sexual behavior, sexual motivation, and the distinct category of "sexual aggression" as separate constructs, each necessitating specific examination. Additionally, epigenetic mechanisms emerge as crucial factors that link stress to changes in gene expression patterns and, subsequently, to behavior. We then discuss how epigenetic modifications can occur in response to stress exposure, altering the regulation of genes associated with stress, aggression, and sexual function. While numerous studies support the association between epigenetic changes and stress-induced behavior, more research is necessary to establish definitive links. Throughout this exploration, it becomes increasingly clear that the relationship between stress, neuromodulator pathways, and epigenetics is intricate and multifaceted. The review emphasizes the need for further research, particularly in the context of human studies, to provide clinical significance and to validate the existing findings from animal models. By better understanding how stress influences aggressive behavior and sexual function through neuromodulator pathways and epigenetic modifications, this research aims to contribute to the development of innovative protocols of precision medicine and more effective strategies for managing the consequences of stress on human behavior. This may also pave way for further research into risk factors and underlying mechanisms that may associate stress with sexual aggression which finds application not only in neuroscience, but also law, ethics, and the humanities in general.
Collapse
Affiliation(s)
- Ngala Elvis Mbiydzenyuy
- Basic Science Department, School of Medicine, Copperbelt University, P.O Box 71191, Ndola, Zambia
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Sian Megan Joanna Hemmings
- Division of Molecular Biology & Human Genetics, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Thando W. Shabangu
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| | - Lihle Qulu-Appiah
- Division of Medical Physiology, Biomedical Science Research Institute, Stellenbosch University, Private Bag X1, Matieland, 7602, Cape Town South Africa
| |
Collapse
|
7
|
Zheng Y, Pan L, He J, Yan J, Xia Y, Lin C, Chen X, Zhao Q, Zeng Q, Julikezi M, Lin X, Li K, Bu Y, Fan Y, Yao L, Zhang M, Chen Y. Electroacupuncture-modulated extracellular ATP levels in prefrontal cortex ameliorated depressive-like behavior of maternal separation rats. Behav Brain Res 2023; 452:114548. [PMID: 37355234 DOI: 10.1016/j.bbr.2023.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
Maternal separation (MS) is a type of early-life stress that has been linked to neuropsychiatric disorders, especially depression. Increasing evidence indicates that the adenosine triphosphate (ATP) level in the prefrontal cortex (PFC) is involved in the pathophysiology of depression. To investigate the potential relationship between ATP in PFC and antidepressant effects of electroacupuncture (EA) treatment, we assessed genes involved in ATP biosynthesis as well as the extracellular ATP levels in a rat model exposed to neonatal MS. Our results demonstrated that reduced expression of ABCG2 (an ATP-binding cassette protein) and ATP levels in the PFC of depressive-like rats exposed to MS can be attenuated by EA stimulus at the Baihui (GV20) and Yintang (GV29) acupoints. Moreover, the antidepressant effect of EA treatment was blocked by administration of suramin, a broad purinergic P2 receptor antagonist. Together, these results suggested that electroacupuncture may be able to modulate extracellular ATP levels in the PFC of depressive-like MS rats, potentially contributing to its antidepressant effects.
Collapse
Affiliation(s)
- Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingyun Pan
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiang He
- Acupuncture and moxibustion and tuina college, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jinglan Yan
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuqi Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiuyun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianyi Zhao
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiuxiang Zeng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Maidinaimu Julikezi
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinyue Lin
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kaixin Li
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Bu
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yujing Fan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Yao
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng Zhang
- Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China; Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, China.
| |
Collapse
|
8
|
D'Addario SL, Municchi D, Mancini C, Ielpo D, Babicola L, Di Segni M, Iacono LL, Ferlazzo F, Cifani C, Andolina D, Ventura R. The long-lasting effects of early life adversities are sex dependent: The signature of miR-34a. J Affect Disord 2023; 322:277-288. [PMID: 36414112 DOI: 10.1016/j.jad.2022.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Exposure to early life adversities (ELA) can influence a plethora of biological mechanisms leading to stress-related disorders later in life through epigenetic mechanisms, such as microRNAs (miRs). MiR-34 is a critical modulator of stress response and stress-induced pathologies and a link between ELA and miR-34a has been reported. METHODS Here using our well-established model of ELA (Repeated Cross Fostering) we investigate the behavioral long-term effects of ELA in male and female mice. We also assess basal and ELA-induced miR-34a expression in adult mice and investigate whether ELA affects the later miR-34a response to adult acute stress exposure across brain areas (medial preFrontal Cortex, Dorsal Raphe Nuclei) and peripheral organs (heart, plasma) in animals from both sexes. Finally, based on our previous data demonstrating the critical role of Dorsal Raphe Nuclei miR-34a expression in serotonin (5-HT) transmission, we also investigated prefrontal-accumbal 5-HT outflow induced by acute stress exposure in ELA and Control females by in vivo intracerebral microdialysis. RESULTS ELA not just induces a depressive-like state as well as enduring changes in miR-34a expression, but also alters miR-34a expression in response to adult acute stress exclusively in females. Finally, altered DRN miR-34a expression is associated with prefrontal-accumbal 5-HT release under acute stress exposure in females. LIMITATIONS Translational study on humans is necessary to verify the results obtained in our animal models of ELA-induced depression. CONCLUSIONS This is the first evidence showing long-lasting sex related effects of ELA on brain and peripheral miR-34a expression levels in an animal model of depression-like phenotype.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Camilla Mancini
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Lucy Babicola
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | | | - Luisa Lo Iacono
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| |
Collapse
|
9
|
Sex differences in addiction-relevant behavioral outcomes in rodents following early life stress. ADDICTION NEUROSCIENCE 2023; 6. [PMID: 37101684 PMCID: PMC10124992 DOI: 10.1016/j.addicn.2023.100067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, exposure to early life stress (ELS) is an established risk factor for the development of substance use disorders (SUDs) during later life. Similarly, rodents exposed to ELS involving disrupted mother-infant interactions, such as maternal separation (MS) or adverse caregiving due to scarcity-adversity induced by limited bedding and nesting (LBN) conditions, also exhibit long-term alterations in alcohol and drug consumption. In both humans and rodents, there is a range of addiction-related behaviors that are associated with drug use and even predictive of subsequent SUDs. In rodents, these include increased anxiety-like behavior, impulsivity, and novelty-seeking, altered alcohol and drug intake patterns, as well as disrupted reward-related processes involving consummatory and social behaviors. Importantly, the expression of these behaviors often varies throughout the lifespan. Moreover, preclinical studies suggest that sex differences play a role in how exposure to ELS impacts reward and addiction-related phenotypes as well as underlying brain reward circuitry. Here, addiction-relevant behavioral outcomes and mesolimbic dopamine (DA) dysfunction resulting from ELS in the form of MS and LBN are discussed with a focus on age- and sex-dependent effects. Overall, these findings suggest that ELS may increase susceptibility for later life drug use and SUDs by interfering with the normal maturation of reward-related brain and behavioral function.
Collapse
|
10
|
Shahrbabaki SV, Jonaidi H, Sheibani V, Bashiri H. Early postnatal handling alters social behavior, learning, and memory of pre- and post-natal VPA-induced rat models of autism in a context-based manner. Physiol Behav 2022; 249:113739. [DOI: 10.1016/j.physbeh.2022.113739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 12/20/2022]
|
11
|
Chen Y, Zheng Y, Yan J, Zhu C, Zeng X, Zheng S, Li W, Yao L, Xia Y, Su WW, Chen Y. Early Life Stress Induces Different Behaviors in Adolescence and Adulthood May Related With Abnormal Medial Prefrontal Cortex Excitation/Inhibition Balance. Front Neurosci 2022; 15:720286. [PMID: 35058738 PMCID: PMC8765554 DOI: 10.3389/fnins.2021.720286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/02/2021] [Indexed: 12/28/2022] Open
Abstract
Early life stress is thought to be a risk factor for emotional disorders, particularly depression and anxiety. Although the excitation/inhibition (E/I) imbalance has been implicated in neuropsychiatric disorders, whether early life stress affects the E/I balance in the medial prefrontal cortex at various developmental stages is unclear. In this study, rats exposed to maternal separation (MS) that exhibited a well-established early life stress paradigm were used to evaluate the E/I balance in adolescence (postnatal day P43-60) and adulthood (P82-100) by behavior tests, whole-cell recordings, and microdialysis coupled with high performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. First, the behavioral tests revealed that MS induced both anxiety- and depressive-like behaviors in adolescent rats but only depressive-like behavior in adult rats. Second, MS increased the action potential frequency and E/I balance of synaptic transmission onto L5 pyramidal neurons in the prelimbic (PrL) brain region of adolescent rats while decreasing the action potential frequency and E/I balance in adult rats. Finally, MS increases extracellular glutamate levels and decreased the paired-pulse ratio of evoked excitatory postsynaptic currents (EPSCs) of pyramidal neurons in the PrL of adolescent rats. In contrast, MS decreased extracellular glutamate levels and increased the paired-pulse ratio of evoked EPSCs of pyramidal neurons in the PrL of adult rats. The present results reveal a key role of E/I balance in different MS-induced disorders may related to the altered probability of presynaptic glutamate release at different developmental stages.
Collapse
Affiliation(s)
- Yiwen Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjia Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinglan Yan
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanan Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Xiamen Xianyue Hospital, Xiamen, China
| | - Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoyi Zheng
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenwen Li
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lin Yao
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yucen Xia
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei-Wei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Chen
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Short AK, Thai CW, Chen Y, Kamei N, Pham AL, Birnie MT, Bolton JL, Mortazavi A, Baram TZ. Single-Cell Transcriptional Changes in Hypothalamic Corticotropin-Releasing Factor-Expressing Neurons After Early-Life Adversity Inform Enduring Alterations in Vulnerabilities to Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 3:99-109. [PMID: 36712559 PMCID: PMC9874075 DOI: 10.1016/j.bpsgos.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background Mental health and vulnerabilities to neuropsychiatric disorders involve the interplay of genes and environment, particularly during sensitive developmental periods. Early-life adversity (ELA) and stress promote vulnerabilities to stress-related affective disorders, yet it is unknown how transient ELA dictates lifelong neuroendocrine and behavioral reactions to stress. The population of hypothalamic corticotropin-releasing factor (CRF)-expressing neurons that regulate stress responses is a promising candidate to mediate the long-lasting influences of ELA on stress-related behavioral and hormonal responses via enduring transcriptional and epigenetic mechanisms. Methods Capitalizing on a well-characterized model of ELA, we examined ELA-induced changes in gene expression profiles of CRF-expressing neurons in the hypothalamic paraventricular nucleus of developing male mice. We used single-cell RNA sequencing on isolated CRF-expressing neurons. We determined the enduring functional consequences of transcriptional changes on stress reactivity in adult ELA mice, including hormonal responses to acute stress, adrenal weights as a measure of chronic stress, and behaviors in the looming shadow threat task. Results Single-cell transcriptomics identified distinct and novel CRF-expressing neuronal populations, characterized by both their gene expression repertoire and their neurotransmitter profiles. ELA-provoked expression changes were selective to specific subpopulations and affected genes involved in neuronal differentiation, synapse formation, energy metabolism, and cellular responses to stress and injury. Importantly, these expression changes were impactful, apparent from adrenal hypertrophy and augmented behavioral responses to stress in adulthood. Conclusions We uncover a novel repertoire of stress-regulating CRF cell types differentially affected by ELA and resulting in augmented stress vulnerability, with relevance to the origins of stress-related affective disorders.
Collapse
Affiliation(s)
- Annabel K. Short
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Christina W. Thai
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Yuncai Chen
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Noriko Kamei
- Department of Pediatrics, University of California Irvine, Irvine, California
| | - Aidan L. Pham
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Matthew T. Birnie
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Jessica L. Bolton
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, California,Department of Pediatrics, University of California Irvine, Irvine, California,Department of Neurology, University of California Irvine, Irvine, California,Address correspondence to Tallie Z. Baram, M.D., Ph.D.
| |
Collapse
|
14
|
Lo Iacono L, Mancini C, Babicola L, Pietrosanto M, Di Segni M, D'Addario SL, Municchi D, Ielpo D, Pascucci T, Cabib S, Ferlazzo F, D'Amato FR, Andolina D, Helmer-Citterich M, Cifani C, Ventura R. Early life adversity affecting the attachment bond alters ventral tegmental area transcriptomic patterning and behavior almost exclusively in female mice. Neurobiol Stress 2021; 15:100406. [PMID: 34660854 PMCID: PMC8503667 DOI: 10.1016/j.ynstr.2021.100406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Early life experiences that affect the attachment bond formation can alter developmental trajectories and result in pathological outcomes in a sex-related manner. However, the molecular basis of sex differences is quite unknown. The dopaminergic system originating from the ventral tegmental area has been proposed to be a key mediator of this process. Here we exploited a murine model of early adversity (Repeated Cross Fostering, RCF) to test how interfering with the attachment bond formation affects the VTA-related functions in a sex-specific manner. Through a comprehensive behavioral screening, within the NiH RDoC framework, and by next-generation RNA-Seq experiments, we analyzed the long-lasting effect of RCF on behavioral and transcriptional profiles related to the VTA, across two different inbred strains of mouse in both sexes. We found that RCF impacted to an extremely greater extent VTA-related behaviors in females than in males and this result mirrored the transcriptional alterations in the VTA that were almost exclusively observed in females. The sexual dimorphism was conserved across two different inbred strains in spite of their divergent long lasting consequences of RCF exposure. Our data suggest that to be female primes a sub-set of genes to respond to early environmental perturbations. This is, to the best of our knowledge, the first evidence of an almost exclusive effect of early life experiences on females, thus mirroring the extremely stronger impact of precocious aversive events reported in clinical studies in women.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | - Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Marco Pietrosanto
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Simona Cabib
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Francesca R D'Amato
- Biochemistry and Cell Biology Institute, National Research Council, Via E Ramarini 32, 00015, Monterotondo Scalo, Roma, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Manuela Helmer-Citterich
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Cifani
- University of Camerino School of Pharmacy, Camerino, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|