1
|
Sun T, Wu J, Yan Z, Liu L, Huang H, Liu H, Tian L. Causal associations between thyroid function and sarcopenia-related traits: a Mendelian randomization study. Hormones (Athens) 2025:10.1007/s42000-025-00664-0. [PMID: 40278995 DOI: 10.1007/s42000-025-00664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND AND OBJECTIVE As the global population ages, the incidence of sarcopenia increases, resulting in increasing numbers of patients with impairments in physical function. Thyroid function disorders may contribute to the pathogenesis of sarcopenia. This study aimed to establish a causal relationship between thyroid hormones (TH) and sarcopenia using a two-sample Mendelian randomization (MR) analysis method. STUDY DESIGN A two-sample MR study was conducted using summary-level data from genome-wide association studies (GWAS) which included publicly available pooled statistics for thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), and the FT3 to FT4 ratio from the Thyroidomics Consortium, as well as summary statistics for sarcopenia-related traits, such as appendicular lean mass (ALM), whole-body lean mass (WBLM), grip strength (left and right), and walking pace from the UK Biobank. The MR analysis used genetic exposure tools for assessment of thyroid function (TSH, FT4, FT3, and the FT3 to FT4 ratio) and outcome measures for sarcopenia (ALM, WBLM, grip strength, and walking pace). The inverse variance weighted method was employed to estimate the genetic predictions of the causal effect of thyroid function on sarcopenia risk. Sensitivity analyses were also conducted to validate the reliability of the MR results. RESULTS Correlations were observed between ALM and several indicators, as follows: TSH (OR: 1.03; 95% CI: 1.01-1.04), FT4 (OR: 0.95; 95% CI: 0.93-0.98), FT3 (OR: 1.09; 95% CI: 1.03-1.15), and the FT3 to FT4 ratio (OR: 1.25; 95% CI: 1.11-1.42). Furthermore, causal relationships were identified between WBLM and TSH (OR: 1.02; 95% CI: 1.01-1.03), as well as low TSH (OR: 0.99; 95% CI: 0.99-1.00) and high TSH (OR: 0.97; 95% CI: 0.96-1.00). Walking pace was associated with low TSH (OR: 0.99; 95% CI: 0.99-1.00), whereas grip strength was related to TSH (OR: 1.01; 95% CI: 1.00-1.02) and low TSH (OR: 0.99; 95% CI: 0.99-1.00). High TSH (OR: 1.04; 95% CI: 1.01-1.08) and FT3 (OR: 0.96; 95% CI: 0.92-1.00) levels were associated with right grip strength. CONCLUSION These results indicate a causal relationship between thyroid function and sarcopenia, highlighting FT3 and the FT3 to FT4 ratio as key indicators. However, total triiodothyronine (TT3) emerges as a potential indicator that requires further investigation in future studies.
Collapse
Affiliation(s)
- Ting Sun
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jialu Wu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhe Yan
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lu Liu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hui Huang
- Department of Endocrinology & Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Hongdie Liu
- Department of Endocrinology & Metabolism, Chengdu Fifth People's Hospital, Wenjiang 610041, Sichuan, People's Republic of China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Shnayder NA, Pekarets NA, Pekarets NI, Dmitrenko DV, Grechkina VV, Petrova MM, Al-Zamil M, Nasyrova RF. MicroRNAs as Epigenetic Biomarkers of Pathogenetic Mechanisms of the Metabolic Syndrome Induced by Antiseizure Medications: Systematic Review. J Clin Med 2025; 14:2432. [PMID: 40217882 PMCID: PMC11989458 DOI: 10.3390/jcm14072432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/27/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Antiseizure medication (ASM) induced metabolic syndrome (AIMetS) is a common adverse drug reaction (ADR) of pharmacotherapy for epilepsy and psychiatric disorders. However, the sensitivity and specificity of blood biomarkers may be insufficient due to the influence of combined pathology, concomitant diseases, and the peculiarities of the metabolism of ASMs in patients with epilepsy. Methods: The presented results of experimental and clinical studies of microRNAs (miRs) as epigenetic biomarkers of MetS and AIMetS, which were entered into the different databases, were analyzed for the last decade (2014-2024). Results: A systematic review demonstrated that miRs can act as promising epigenetic biomarkers of key AIMetS domains. However, the results of the review demonstrated the variable role of various miRs and their paralogs in the pathogenesis of AIMetS. Therefore, as part of this study, an miRs signature was proposed that allows us to assess the risk of developing and the severity of AIMetS as low risk, medium risk, and high risk. Conclusions: The mechanisms of development and biomarkers of AIMetS are an actual problem of epileptology, which is still far from being resolved. The development of panels (signatures) of epigenetic biomarkers of this widespread ADR may help to increase the safety of pharmacotherapy of epilepsy. However, to increase the sensitivity and specificity of circulating miRs in the blood as biomarkers of AIMetS, it is necessary to conduct "bridge" studies in order to replicate the results of preclinical and clinical studies into real clinical practice.
Collapse
Affiliation(s)
- Natalia A. Shnayder
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Nikolai A. Pekarets
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Natalia I. Pekarets
- Department of Psychiatry and Clinical Psychology, Irkutsk State Medical University, 1 Krasny Vosstaniya St., 664003 Irkutsk, Russia;
| | - Diana V. Dmitrenko
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Violetta V. Grechkina
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
| | - Marina M. Petrova
- Shared Core Facilities “Molecular and Cell Technologies”, V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizan Zheleznyak St., 660022 Krasnoyarsk, Russia; (D.V.D.); (M.M.P.)
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Regina F. Nasyrova
- Institute of Personalized Psychiatry and Neurology, V.M. Bekhterev National Medical Research Center for Psychiatry and Neurology, 3 Bekhterev St., 192019 St. Petersburg, Russia; (N.A.P.); (V.V.G.); (R.F.N.)
- Department of Psychiatry, General and Clinical Psychology, Tula State University, 92 Lenin Ave., 300012 Tula, Russia
| |
Collapse
|
3
|
Contreras-Jurado C. Validation of miR-21, miR-31, miR-34A, and miR-203 Changes by Quantitative Polymerase Chain Reaction in Isolated Keratinocytes. Methods Mol Biol 2025; 2876:163-172. [PMID: 39579315 DOI: 10.1007/978-1-0716-4252-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
MiRNAs play integral roles in diverse cellular functions, and their dysregulation is central to various pathological processes. Thyroid hormone (TH) is indispensable for numerous physiological processes, and it has been shown that multiple miRNAs regulate TH signaling in various tissues.This chapter describes a method for validating changes in miRNA observed through RNAseq. The method involves measuring the expression of mature miRNA levels in keratinocytes using the stem-loop real-time PCR. This method utilizes stem-loop RT primers to create cDNA for specific miRNAs in a single RT reaction. The keratinocytes used are derived from the total skin of four-day-old wild-type controls and double thyroid receptors knock-out mice (dTRKO).
Collapse
Affiliation(s)
- Constanza Contreras-Jurado
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), Madrid, Spain.
- Facultad de Medicina, Universidad Alfonso X El Sabio, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Ren Z, Wang W, He X, Chu M. The Response of the miRNA Profiles of the Thyroid Gland to the Artificial Photoperiod in Ovariectomized and Estradiol-Treated Ewes. Animals (Basel) 2024; 15:11. [PMID: 39794954 PMCID: PMC11718883 DOI: 10.3390/ani15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The photoperiod has been considered to be a key environmental factor in sheep reproduction, and some studies have shown that the thyroid gland plays an important role in mammalian reproduction, but the molecular mechanism is still unclear. In this study, we used the artificial-light-controlled, ovariectomized, and estradiol-treated model (OVX + E2 model); healthy and consistent 2-3-year-old Sunite multiparous ewes were collected; and thyroids were collected for testing, combined with RNA-seq technology and bioinformatics analysis, to analyze the effects of different photoperiods (long photoperiod treatment for 42 days, LP42; short photoperiod treatment for 42 days, SP42; SP42 transferred to LP42, SPLP42) on the variations in the miRNA profiles of the thyroid gland. A total of 105 miRNAs were differentially expressed in the thyroid gland, most of which were new miRNAs. Through GO and KEGG enrichment analysis, the results showed that the photoperiod response characteristics of Sunite ewes were affected by Olfactory transduction, Wnt signaling pathways, and Apelin signaling pathways. A different illumination time may have a certain influence on the downstream of these pathways, which leads to the change in animal estrus state. In addition, lncRNA-mRNA-miRNA network analysis revealed the target binding sites of identified miRNAs in DE-circRNA and DE-mRNA, such as Novel_369, Novel_370, Novel_461, and so on. The results of this study will provide some new insights into the function of miRNA and the changes in sheep thyroid glands under different photoperiods.
Collapse
Affiliation(s)
| | | | | | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.R.); (W.W.); (X.H.)
| |
Collapse
|
5
|
Trotta MC, Esposito D, Carotenuto R, di Fraia R, Selvaggio LD, Allosso F, Russo M, Accardo G, Alfano R, D'Amico M, Pasquali D. Thyroid dysfunction in Hashimoto's thyroiditis: a pilot study on the putative role of miR-29a and TGFβ1. Endocrine 2024; 86:1090-1096. [PMID: 39023839 PMCID: PMC11554689 DOI: 10.1007/s12020-024-03965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE Hashimoto's thyroiditis (HT) is one of the most common causes of thyroid dysfunction in iodine sufficient worldwide areas, but its molecular mechanisms are not completely understood. To this regard, this study aimed to assess serum levels of miRNA-29a (miR-29a) and transforming growth factor beta 1 (TGFβ1) in HT patients with different patterns of thyroid function. METHODS A total of 29 HT patients, with a median age of 52 years (21-68) were included. Of these, 13 had normal thyroid function (Eu-HT); 8 had non-treated hypothyroidism (Hypo-HT); 8 had hypothyroidism on replacement therapy with LT4 (subst-HT). All patients had serum miR-29a assayed through qRT-PCR and serum TGFβ1 assayed by ELISA. RESULTS Serum miR-29a levels were significantly down-regulated in patients with Hypo-HT compared to Eu-HT patients (P < 0.01) and subst-HT patients (P < 0.05). A significant negative correlation was detected between serum miR-29a levels and TSH levels (r = -0.60, P < 0.01). Serum TGFβ1 levels were significantly higher in Hypo-HT than both Eu-HT (P < 0.01) and subst-HT patients (P < 0.05). A negative correlation was observed between serum miR-29a and TGFβ1 (r = -0.75, P < 0.01). CONCLUSIONS In conclusion, Hypo-HT patients had lower levels of serum miR-29a and higher levels of TGFβ1 in comparison with Eu-HT patients. Worthy of note, subst-HT patients showed restored serum miR-29a levels compared with Hypo-HT group, associated with lower serum TGFβ1. These novel findings may suggest a possible impact of replacement therapy with levothyroxine on serum miR-29a levels in HT.
Collapse
Affiliation(s)
- Maria Consiglia Trotta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Daniela Esposito
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Endocrinology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Rosa di Fraia
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Lucia Digitale Selvaggio
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Francesca Allosso
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Marina Russo
- PhD Course in National Interest in Public Administration and Innovation for Disability and Social Inclusion, Department of Mental, Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- School of Pharmacology and Clinical Toxicology, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | | | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy
| | - Michele D'Amico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Daniela Pasquali
- Department of Advanced Medical and Surgical Sciences, University of Campania, "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
6
|
Sinha RA, Yen PM. Metabolic Messengers: Thyroid Hormones. Nat Metab 2024; 6:639-650. [PMID: 38671149 PMCID: PMC7615975 DOI: 10.1038/s42255-024-00986-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Thyroid hormones (THs) are key hormones that regulate development and metabolism in mammals. In man, the major target tissues for TH action are the brain, liver, muscle, heart, and adipose tissue. Defects in TH synthesis, transport, metabolism, and nuclear action have been associated with genetic and endocrine diseases in man. Over the past few years, there has been renewed interest in TH action and the therapeutic potential of THs and thyromimetics to treat several metabolic disorders such as hypercholesterolemia, dyslipidaemia, non-alcoholic fatty liver disease (NAFLD), and TH transporter defects. Recent advances in the development of tissue and TH receptor isoform-targeted thyromimetics have kindled new hope for translating our fundamental understanding of TH action into an effective therapy. This review provides a concise overview of the historical development of our understanding of TH action, its physiological and pathophysiological effects on metabolism, and future therapeutic applications to treat metabolic dysfunction.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Div. Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
7
|
Huang B, Zhang Y, Sun P, Yuan Y, Wang C. MiR-138-5p Inhibits Thyroid Cancer Cell Growth and Stemness by Targeting TRPC5/Wnt/β-Catenin Pathway. Mol Biotechnol 2024; 66:544-553. [PMID: 37278959 DOI: 10.1007/s12033-023-00782-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
MicroRNAs play a key role in the pathogenesis of many types of cancer, including thyroid cancer (TC). MiR-138-5p has been confirmed to be abnormally expressed in TC tissues. However, the role of miR-138-5p in TC progression and its potential molecular mechanism need to be further explored. In this study, quantitative real-time PCR was used to examine miR-138-5p and TRPC5 expression, and western blot analysis was performed to examine the protein levels of TRPC5, stemness-related markers, and Wnt pathway-related markers. Dual-luciferase reporter assay was used to assess the interaction between miR-138-5p and TRPC5. Cell proliferation, stemness, and apoptosis were examined using colony formation assay, sphere formation assay, and flow cytometry. Our data showed that miR-138-5p could target TRPC5 and its expression was negatively correlated with TRPC5 expression in TC tumor tissues. MiR-138-5p decreased proliferation, stemness, and promoted gemcitabine-induced apoptosis in TC cells, and this effect could be reversed by TRPC5 overexpression. Moreover, TRPC5 overexpression abolished the inhibitory effect of miR-138-5p on the activity of Wnt/β-catenin pathway. In conclusion, our data showed that miR-138-5p suppressed TC cell growth and stemness via the regulation of TRPC5/Wnt/β-catenin pathway, which provided some guidance for studying the potential function of miR-138-5p in TC progression.
Collapse
Affiliation(s)
- Bo Huang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, No.613, Huangpu Street, Guangzhou, 510000, China
| | - YiChao Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, No.613, Huangpu Street, Guangzhou, 510000, China
| | - Peng Sun
- Department of General Surgery, The First Affiliated Hospital of Jinan University, No.613, Huangpu Street, Guangzhou, 510000, China
| | - YuanYuan Yuan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, No.613, Huangpu Street, Guangzhou, 510000, China
| | - CunChuan Wang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, No.613, Huangpu Street, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Ma YR, Gao W, Wang HQ, Zhao PS, Zhang YX, Wei FH, Jiang H, Zhang JB, Yuan B, Gao F. EGF-driven EGFR/miR-27b-3p/FOXO1 promotes rat FSH synthesis and secretion. FASEB J 2024; 38:e23469. [PMID: 38358361 DOI: 10.1096/fj.202301970r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.
Collapse
Affiliation(s)
- Yi-Ran Ma
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Wei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao-Qi Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Pei-Sen Zhao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Yu-Xin Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fan-Hao Wei
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| | - Fei Gao
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
9
|
Mohammed A, Shaker OG, Khalil MAF, Abu-El-Azayem AK, Samy A, Fathy SA, AbdElguaad MMK, Mahmoud FAM, Erfan R. Circulating miR-206, miR-181b, and miR-21 as promising biomarkers in hypothyroidism and their relationship to related hyperlipidemia and hepatic steatosis. Front Mol Biosci 2024; 11:1307512. [PMID: 38370005 PMCID: PMC10869530 DOI: 10.3389/fmolb.2024.1307512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/08/2024] [Indexed: 02/20/2024] Open
Abstract
Background: Thyroid hormones (THs) signaling has profound effects on many physiological processes. The regulation of THs signaling in various tissues involves the action of microRNAs (miRNAs) on thyroid deiodinases and receptors. THs regulate the expression of certain miRNAs and their target messenger RNAs (mRNAs) in various tissues and cells. The modulation of miRNA levels by THs affects their functions in processes such as liver lipid metabolism, skin physiology, and muscle and heart performance. Aim: This research aimed to investigate miR-181b, miR-206, and miR-21 in the serum of patients with subclinical and overt hypothyroidism to determine their possible role in the diagnosis of the disease and their relationship to clinical disorders related to hypothyroidism. Methods: This study included ninety participants, divided evenly into three groups as follows: patients with overt hypothyroidism diagnosed clinically, radiologically, and by investigation, subclinical hypothyroid patients, and healthy volunteers. The patients had a thorough medical history and underwent a clinical examination. Laboratory tests included plasma cholesterol, LDL, HDL, TGs, liver and renal function tests, CBC, fasting insulin, HOMA-IR, HbA1c, TSH, and free T4. The serum levels of miR-21, miR-206, and miR-181b were measured using qRT-PCR. Results: miR-206 and miR-181b levels were higher in the subclinical group, followed by the hypothyroid and control groups. For miR-21, there was a significantly lower mean value in both the hypothyroid and subclinical groups than in the control group, with no difference between the two groups. Both miR-206 and miR-181b showed a significant negative association with albumin and free T4 levels and a significant direct association with GGT, ALT, AST, creatinine, uric acid, TGs, TC, LDL, TSH, thyroid volume, and CAP score. The same correlation pattern was observed for miR-181b, except that it was not significantly correlated with the TGs. For miR-21 levels, there was a significant positive correlation with albumin, free T4 level, and kPa score and a negative correlation with GGT, ALT, AST, creatinine, uric acid, HOMA-IR, HbA1c, TC, LDL, TSH, and CAP score. Cases with F1 kPa score and S2 CAP scores had significantly higher averages for miR-206 and miR-181b, with a p-value of 0.05. Moreover, miR-21 levels were significantly lower in the S2 CAP score group. Conclusion: These miRNAs (miR-206, miR-181b, and miR-21) may be used as diagnostic biomarkers for hypothyroidism. They may be used as therapeutic targets to control dyslipidemia and hepatic steatosis during hypothyroid disease.
Collapse
Affiliation(s)
- Asmaa Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud A. F. Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| | - Abeer K. Abu-El-Azayem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Amira Samy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Shaimaa A. Fathy
- Department of Internal Medicine, Diabetes and Endocrinology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Fatma A. M. Mahmoud
- Department of Tropical Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Randa Erfan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Stryhn JKG, Larsen J, Pedersen PL, Gæde PH. Expressions of mitochondria-related genes in pregnant women with subclinical hypothyroidism, and expressions of miRNAs in maternal and cord blood. Thyroid Res 2023; 16:38. [PMID: 37723507 PMCID: PMC10506244 DOI: 10.1186/s13044-023-00180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/19/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Subclinical hypothyroidism in pregnancy and definition by upper thyrotropin (TSH) cutoff are controversial. As mitochondria are influenced by thyroid hormones, the purpose in this study was to measure expression of mitochondria-related genes in euthyroid and subclinical hypothyroid pregnant women to obtain more knowledge of potential metabolic consequences of maternal subclinical hypothyroidism. In addition, we wished to test if applied TSH-cutoff significantly changed our results of expressed gene-levels. Moreover, we aimed to identify potential microRNA-biomarkers for subclinical hypothyroidism - markers that could be traced to offspring as well. METHODS From a cohort of at-term pregnant women undergoing planned cesarean section, 77 women had expression levels of the mitochondria-related genes Peroxisome Proliferator-activated Receptor-γ coactivator-1β (PGC-1β), mitochondrial Transcription Factor A (TFAM), Superoxide Dismutase 2 (SOD2) and Nuclear Respiratory Factor 2 (NRF-2) determined by qPCR from blood sampled in prior to delivery. Two TSH-cutoff levels defining subclinical hypothyroidism (> 3.0 and > 3.7 mIU/L) were applied for the procession of results, generating two data analyses of the same cohort. In 22 pairwise maternal-cord samples (subclinical hypothyroid/euthyroid-rate 0.5, TSH-cutoff > 3.0 mIU/L), microRNA-expressions (miRNA) were analyzed. RESULTS All gene expressions were lower in the subclinical hypothyroid group regardless of applied TSH-cutoff, but insignificant except for PGC-1β at TSH cutoff > 3.0 mIU/L. Two miRNAs (hsa-let-7d-3p and hsa-miR-345-5p) were upregulated in blood from women and offspring (cord blood) with subclinical hypothyroidism. CONCLUSIONS A trend towards decreased mitochondrial gene expressions in subclinical hypothyroidism were demonstrated. The miRNAs hsa-let-7d-3p and hsa-miR-345-5p might be potential markers of maternal subclinical hypothyroidism. However, larger studies are needed to verify the findings.
Collapse
Affiliation(s)
- Julie Kristine Guldberg Stryhn
- Department of Gynecology and Obstetrics, Slagelse Hospital, Fælledvej 13, 4200, Slagelse, Denmark.
- Mitochondria Research Unit, Naestved Hospital, Ringstedgade 61, 4700, Naestved, Denmark.
- Faculty of Health Sciences, University of Southern Denmark, Winsløws Parken, J. B. Winsløws Vej 19, 3, 5000, Odense, Denmark.
| | - Jacob Larsen
- Mitochondria Research Unit, Naestved Hospital, Ringstedgade 61, 4700, Naestved, Denmark
- Department of Clinical Pathology, Roskilde Hospital, Sygehusvej 9, 4000, Roskilde, Denmark
| | - Palle Lyngsie Pedersen
- Mitochondria Research Unit, Naestved Hospital, Ringstedgade 61, 4700, Naestved, Denmark
- Department of Clinical Biochemistry, Naestved Hospital, Ringstedgade 61, 4700, Naestved, Denmark
| | - Peter Haulund Gæde
- Faculty of Health Sciences, University of Southern Denmark, Winsløws Parken, J. B. Winsløws Vej 19, 3, 5000, Odense, Denmark
- Department of Internal Medicine (Endocrinology), Slagelse Hospital, Fælledvej 7, 4200, Slagelse, Denmark
| |
Collapse
|
11
|
Abd ZMA, Khinteel Jabbar N. CIRCULATING MICRORNA-22 AS A BIOMARKER RELATED TO OXIDATIVE STRESS IN HYPOTHYROID WOMEN PATIENT. MILITARY MEDICAL SCIENCE LETTERS 2023. [DOI: 10.31482/mmsl.2023.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
12
|
Liu M, Yu Z, Zhao Z, Yang F, Zhou M, Wang C, Tian X, Zhang B, Liang G, Liu X, Shao J. MiR-24-3p/Dio3 axis is essential for BDE47 to induce local thyroid hormone disorder and neurotoxicity. Toxicology 2023; 491:153527. [PMID: 37116683 DOI: 10.1016/j.tox.2023.153527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
BDE47 (2,2,4,4-tetrabromodiphenyl ether) is a member of the most important congeners of polybrominated diphenyl ethers (PBDEs) and has been identified as a developmental, reproductive and nervous system toxicant and endocrine system disruptor due to its frequent detection in human tissue and environmental samples. Our preliminary work suggested that high- and low-level of bromodiphenyl ethers have different effects on neuronal cells with differential targets of actions on neural tissues. In this study, we presented the underlying mechanism of BDE47 neurotoxicity from the perspective of thyroid hormone (TH) metabolism using in vitro model of human SK-N-AS neuronal cells. BDE47 could induce local TH metabolism disorder in neuronal cells by inhibiting the expression of the main enzyme, human type III iodothyronine deiodinase (Dio3). Further elucidation revealed that BDE47 effectively up-regulating miR-24-3p, which binds to the 3'-UTR of Dio3 and inhibits its expression. In addition, BDE47 could also inhibit the deiodinase activity of Dio3. Collectively, our study demonstrates the molecular mechanism of BDE47 regulating Dio3-induced TH metabolism disorder through inducing miR-24-3p, providing new clues for the role of miRNAs in neurodevelopmental toxicity mediated by environmental pollutants.
Collapse
Affiliation(s)
- Min Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Neurology Department, Dalian University Affiliated Xinhua Hospital, Dalian, 116021, China
| | - Zhenlong Yu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Zikuang Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 116000, China
| | - Fangyu Yang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China
| | - Meirong Zhou
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Xiangge Tian
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Baojing Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Guobiao Liang
- General Hospital of Northern Theater Command (General Hospital of Shenyang Military Command), Department of Neurosurgery, Shenyang, China.
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, 116044, China; Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine; Liaoning Medical Center for Hematopoietic Stem Cell Transplantation; Dalian Key Laboratory of Hematology; Diamond Bay Institute of Hematology; Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
13
|
Shree N, Ding Z, Flaws J, Choudhury M. Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:1034. [PMID: 36355117 PMCID: PMC9695656 DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 01/22/2025] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
Affiliation(s)
- Nitya Shree
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Zehuan Ding
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| | - Jodi Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61802, USA
| | - Mahua Choudhury
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University (TAMU), College Station, TX 77843, USA
| |
Collapse
|
14
|
Li Y, Yuan P, Fan S, Zhai B, Jin W, Li D, Li H, Sun G, Han R, Liu X, Tian Y, Li G, Kang X. Weighted gene co-expression network indicates that the DYNLL2 is an important regulator of chicken breast muscle development and is regulated by miR-148a-3p. BMC Genomics 2022; 23:258. [PMID: 35379193 PMCID: PMC8978428 DOI: 10.1186/s12864-022-08522-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The characteristics of muscle fibers determine the growth and meat quality of poultry. In this study, we performed a weighted gene co-expression network analysis (WGCNA) on the muscle fiber characteristics and transcriptome profile of the breast muscle tissue of Gushi chicken at 6, 14, 22, and 30 weeks. RESULTS A total of 27 coexpressed biological functional modules were identified, of which the midnight blue module had the strongest correlation with muscle fiber and diameter. In addition, 7 hub genes were found from the midnight blue module, including LC8 dynein light chain 2 (DYNLL2). Combined with miRNA transcriptome data, miR-148a-3p was found to be a potential target miRNA of DYNLL2. Experiments on chicken primary myoblasts (CPMs) demonstrated that miR-148a-3p promotes the expression of myosin heavy chain (MYHC) protein by targeting DYNLL2, proving that it can promote differentiation of myoblasts. CONCLUSIONS This study proved that the hub gene DYNLL2 and its target miR-148-3p are important regulators in chicken myogenesis. These results provide novel insights for understanding the molecular regulation mechanisms related to the development of chicken breast muscle.
Collapse
Affiliation(s)
- Yuanfang Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengtao Yuan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shengxin Fan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Zhai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenjiao Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guirong Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou, 450046, China.
| |
Collapse
|
15
|
Turroni F, Rizzo SM, Ventura M, Bernasconi S. Cross-talk between the infant/maternal gut microbiota and the endocrine system: a promising topic of research. MICROBIOME RESEARCH REPORTS 2022; 1:14. [PMID: 38045647 PMCID: PMC10688790 DOI: 10.20517/mrr.2021.14] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/05/2023]
Abstract
The infant gut microbiota is the set of microorganisms colonizing the baby's intestine. This complex ecosystem appears to be related to various physiological conditions of the host and it has also been shown to act as one of the most crucial determinants of infant's health. Furthermore, the mother's endocrine system, through its hormones, can have an effect on the composition of the newborn's gut microbiota. In this perspective, we summarize the recent state of the art on the intricate relationships involving the intestinal microbiota and the endocrine system of mother/baby to underline the need to study the molecular mechanisms that appear to be involved.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
| | | |
Collapse
|
16
|
Abstract
The present review traces the road leading to discovery of L-thyroxine, thyroid hormone (3,5,3´-triiodo-L-thyronine, T3) and its cognate nuclear receptors. Thyroid hormone is a pleio-tropic regulator of growth, differentiation, and tissue homeostasis in higher organisms. The major site of the thyroid hormone action is predominantly a cell nucleus. T3 specific binding sites in the cell nuclei have opened a new era in the field of the thyroid hormone receptors (TRs) discovery. T3 actions are mediated by high affinity nuclear TRs, TRalpha and TRbeta, which function as T3-activated transcription factors playing an essential role as transcription-modulating proteins affecting the transcriptional responses in target genes. Discovery and characterization of nuclear retinoid X receptors (RXRs), which form with TRs a heterodimer RXR/TR, positioned RXRs at the epicenter of molecular endocrinology. Transcriptional control via nuclear RXR/TR heterodimer represents a direct action of thyroid hormone. T3 plays a crucial role in the development of brain, it exerts significant effects on the cardiovascular system, skeletal muscle contractile function, bone development and growth, both female and male reproductive systems, and skin. It plays an important role in maintaining the hepatic, kidney and intestine homeostasis and in pancreas, it stimulates the beta-cell proliferation and survival. The TRs cross-talk with other signaling pathways intensifies the T3 action at cellular level. The role of thyroid hormone in human cancers, acting via its cognate nuclear receptors, has not been fully elucidated yet. This review is aimed to describe the history of T3 receptors, starting from discovery of T3 binding sites in the cell nuclei to revelation of T3 receptors as T3-inducible transcription factors in relation to T3 action at cellular level. It also focuses on milestones of investigation, comprising RXR/TR dimerization, cross-talk between T3 receptors, and other regulatory pathways within the cell and mainly on genomic action of T3. This review also focuses on novel directions of investigation on relationships between T3 receptors and cancer. Based on the update of available literature and the author's experimental experience, it is devoted to clinicians and medical students.
Collapse
|