1
|
Lan N, Bai S, Chen M, Wang X, Feng Z, Gao Y, Hui B, Ma W, Zhang X, Hu F, Liu W, Li W, Wu F, Ren J. MECOM Locus classical transcript isoforms affect tumor immune microenvironment and different targets in ovarian cancer. J Ovarian Res 2024; 17:207. [PMID: 39427186 PMCID: PMC11490020 DOI: 10.1186/s13048-024-01522-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024] Open
Abstract
The MECOM locus is a gene frequently amplified in high-grade serous ovarian carcinoma (HGSOC). Nevertheless, the body of research examining the associations among MECOM transcripts, patient prognosis, and their role in modulating the tumor immune microenvironment (TIME) remains sparse, particularly in large cohorts. This study assessed the expression of MECOM transcripts in 352 HGSOC patients and 88 normal ovarian tissues from the combined GTEx/TCGA database. Using resources such as the UCSC Genome Browser, Ensembl, and NextProt, two transcripts corresponding to classical protein isoforms from MECOM were identified. Cox proportional hazards regression analysis, Kaplan-Meier survival curves, and a comprehensive TIME evaluation algorithm were employed to elucidate the connections between the expression levels of these transcripts and both patient prognosis and TIME status. Chromatin Immunoprecipitation sequencing (ChIP-seq) data for the two protein isoforms, as well as RNA sequencing data post-targeted silencing, were analyzed to identify potential regulatory targets of the different transcription factors. Elevated expression of the MECOM isoform transcripts was correlated with poorer survival in HGSOC patients, potentially through the modulation of cancer-associated fibroblasts (CAFs) and immunosuppressive cell populations. In contrast, higher levels of EVI1 isoform transcripts were linked to enhanced survival, possibly due to the regulation of CD8+ T cells, macrophages, and a reduction in the expression of JUN protein, or its DNA-binding activity on downstream genes. Diverse protein isoforms derived from MECOM were found to differentially affect the survival and tumor development in ovarian cancer patients through specific mechanisms. Investigating the molecular mechanisms underlying disease pathogenesis and identifying potential drug target proteins at the level of splice variant isoforms were deemed crucial.
Collapse
Affiliation(s)
- Ning Lan
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Shuheng Bai
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Min Chen
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Xuan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Zhaode Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Ying Gao
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Beina Hui
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Wen Ma
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu Province, 730030, PR China
| | - Xiangxiang Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Fengyuan Hu
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Wanyi Liu
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Wenyang Li
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Fang Wu
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China
| | - Juan Ren
- Department of Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, PR China.
| |
Collapse
|
2
|
Yee C, Xiao Y, Chen H, Reddy AR, Xu B, Medwig-Kinney TN, Zhang W, Boyle AP, Herbst WA, Xiang YK, Matus DQ, Shen K. An activity-regulated transcriptional program directly drives synaptogenesis. Nat Neurosci 2024; 27:1695-1707. [PMID: 39103556 PMCID: PMC11374667 DOI: 10.1038/s41593-024-01728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
Although the molecular composition and architecture of synapses have been widely explored, much less is known about what genetic programs directly activate synaptic gene expression and how they are modulated. Here, using Caenorhabditis elegans dopaminergic neurons, we reveal that EGL-43/MECOM and FOS-1/FOS control an activity-dependent synaptogenesis program. Loss of either factor severely reduces presynaptic protein expression. Both factors bind directly to promoters of synaptic genes and act together with CUT homeobox transcription factors to activate transcription. egl-43 and fos-1 mutually promote each other's expression, and increasing the binding affinity of FOS-1 to the egl-43 locus results in increased presynaptic protein expression and synaptic function. EGL-43 regulates the expression of multiple transcription factors, including activity-regulated factors and developmental factors that define multiple aspects of dopaminergic identity. Together, we describe a robust genetic program underlying activity-regulated synapse formation during development.
Collapse
Affiliation(s)
- Callista Yee
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Hongwen Chen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anay R Reddy
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Healthcare System, Mather, CA, USA
| | - Taylor N Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Wendy A Herbst
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA
| | - Yang Kevin Xiang
- Department of Pharmacology, University of California, Davis, Davis, CA, USA
- VA Northern California Healthcare System, Mather, CA, USA
| | - David Q Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Chen Y, Jiang Q, Xue Y, Chen W, Hua M. CRISPR-Cas9-mediated deletion enhancer of MECOM play a tumor suppressor role in ovarian cancer. Funct Integr Genomics 2024; 24:125. [PMID: 38995475 DOI: 10.1007/s10142-024-01399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
MDS1 and EVI1 complex locus (MECOM), a transcription factor encoding several variants, has been implicated in progression of ovarian cancer. The function of regulatory regions in regulating MECOM expression in ovarian cancer is not fully understood. In this study, MECOM expression was evaluated in ovarian cancer cell lines treated with bromodomain and extraterminal (BET) inhibitor JQ-1. Oncogenic phenotypes were assayed using assays of CCK-8, colony formation, wound-healing and transwell. Oncogenic phenotypes were estimated in stable sgRNA-transfected OVCAR3 cell lines. Xenograft mouse model was assayed via subcutaneous injection of enhancer-deleted OVCAR3 cell lines. The results displayed that expression of MECOM is downregulated in cell lines treated with JQ-1. Data from published ChIP-sequencing (H3K27Ac) in 3 ovarian cancer cell lines displayed a potential enhancer around the first exon. mRNA and protein expression were downregulated in OVCAR3 cells after deletion of the MECOM enhancer. Similarly, oncogenic phenotypes both in cells and in the xenograft mouse model were significantly attenuated. This study demonstrates that JQ-1 can inhibit the expression of MECOM and tumorigenesis. Deletion of the enhancer activity of MECOM has an indispensable role in inhibiting ovarian cancer progress, which sheds light on a promising opportunity for ovarian cancer treatment through the application of this non-coding DNA deletion.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Qiuwen Jiang
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Yingzhuo Xue
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China
| | - Weiguan Chen
- Department of Rehabilitation Medicine, the first People's Hospital of Nantong, No. 666 Shengli Road, Nantong, 226001, China
| | - Minhui Hua
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, China.
| |
Collapse
|
4
|
Liang H, Geng S, Wang Y, Fang Q, Xin Y, Li Y. Tumour-derived exosome SNHG17 induced by oestrogen contributes to ovarian cancer progression via the CCL13-CCR2-M2 macrophage axis. J Cell Mol Med 2024; 28:e18315. [PMID: 38680032 PMCID: PMC11056704 DOI: 10.1111/jcmm.18315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 05/01/2024] Open
Abstract
Oestrogen is known to be strongly associated with ovarian cancer. There was much work to show the importance of lncRNA SNHG17 in ovarian cancer. However, no study has revealed the molecular regulatory mechanism and functional effects between oestrogen and SNHG17 in the development and metastasis of ovarian cancer. In this study, we found that SNHG17 expression was significantly increased in ovarian cancer and positively correlated with oestrogen treatment. Oestrogen could promote M2 macrophage polarization as well as ovarian cancer cells SKOV3 and ES2 cell exosomal SNHG17 expression. When exposure to oestrogen, exosomal SNHG17 promoted ovarian cancer cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) in vitro, and tumour growth and lung metastasis in vivo by accelerating M2-like phenotype of macrophages. Mechanically, exosomal SNHG17 could facilitate the release of CCL13 from M2 macrophage via the PI3K-Akt signalling pathway. Moreover, CCL13-CCR2 axis was identified to be involved in ovarian cancer tumour behaviours driven by oestrogen. There results demonstrate a novel mechanism that exosomal SNHG17 exerts an oncogenic effect on ovarian cancer via the CCL13-CCR2-M2 macrophage axis upon oestrogen treatment, of which SNHG17 may be a potential biomarker and therapeutic target for ovarian cancer responded to oestrogen.
Collapse
Affiliation(s)
- Haiyan Liang
- Department of Obstetrics and GynecologyChina‐Japan Friendship HospitalBeijingChina
| | - Shuo Geng
- Department of Obstetrics and GynecologyChina‐Japan Friendship HospitalBeijingChina
| | - Yadong Wang
- Scientific Research DepartmentGeneX Health Co., LtdBeijingChina
| | - Qing Fang
- Institute of Clinical MedicineChina‐Japan Friendship HospitalBeijingChina
| | - Yongfeng Xin
- Department of GynecologyThe People's Hospital of DaLaTeOrdosInner MongoliaChina
| | - Yanqing Li
- Department of GynecologyHebei Provincial Hospital of Traditional Chinese MedicineWuhanHebeiChina
| |
Collapse
|
5
|
Liu X, Chen Z, Zhang L. Identification of estrogen response-associated STRA6+ granulosa cells within high-grade serous ovarian carcinoma by single-cell sequencing. Heliyon 2024; 10:e27790. [PMID: 38509903 PMCID: PMC10950672 DOI: 10.1016/j.heliyon.2024.e27790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/31/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
Background High-grade serous ovarian carcinoma (HGSOC) is a pathologic subtype of ovarian cancer (OC) with a more lethal prognosis. Extensive heterogeneity results in HGSOC being more susceptible to treatment resistance and adverse treatment effects. Revealing the heterogeneity involved is crucial. Methods We downloaded the single-cell RNA-seq (scRNA) data from GEO database and performed a scRNA analysis for cell landscape of HGSOC by using the Seurat package. The highly expressed genes were uploaded into the DAVID and KEGG database for enrichment analysis, and the AUCell package was used to calculate cancer-associated hallmark score. The SCENIC analysis was used for key regulons, the estrogen response enrichment scores in TCGA-OV RNA-seq dataset were calculated by using the GSVA package. Besides, the expression of STRA6 and IRF1 and the cell invasion and migration in si-STRA6 OC cells were detected by using the quantitative reverse transcription (qRT)-PCR method and Transwell assay respectively. Results We successfully constructed a single-cell atlas of HGSOC and delineated the heterogeneity of epithelial cells therein. There were five epithelial cell subpopulations, GLDC + Epithelial cells, PEG3+ leydig cells, STRA6+ granulosa cells, POLE2+ Epithelial cells, and AURKA + Epithelial cells. STRA6+ granulosa cells have the potential to promote tumor growth as well as the highest estrogen response early activity through the biological pathways analysis of highly expressed genes and estrogen response score of ssGSEA. We found that IRF1 and STRA6 expression was remarkably upregulated in the OC cancer cell line HEY. Silencing of STRA6 markedly decreased the invasion and migration ability of the OC cancer cell line HEY. Conclusion There is extreme heterogeneity of epithelial cells in HGSOC, and STRA6+ granulosa cells may be able to promote cancer progression. Our findings are benefit to the heterogeneity identification of HGSOC and develop targeted therapy strategy for HGSOC patients.
Collapse
Affiliation(s)
- Xiaoting Liu
- Medical College, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhaojun Chen
- Laboratory Department, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Lahong Zhang
- Laboratory Department, Hangzhou Normal University Affiliated Hospital, Hangzhou, 310015, China
| |
Collapse
|
6
|
Li A, Li M, Wang J, Zhou J, Yang T, Fan M, Zhang K, Gao H, Ren H, Chen M. MECOM: a bioinformatics and experimentally identified marker for the diagnosis and prognosis of lung adenocarcinoma. Biomark Med 2024; 18:79-91. [PMID: 38440890 DOI: 10.2217/bmm-2023-0600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Objective: We aimed to explore the clinical value of MDS1 and EVI1 complex locus (MECOM) in lung adenocarcinoma (LUAD). Methods: Bioinformatics and experimental validation confirmed MECOM expression levels in LUAD. The value of MECOM was analyzed by receiver operating characteristic (ROC) curve and Cox regression analysis. Results: Serum MECOM levels were lower in LUAD and correlated with gender, TNM stage, tumor size, lymph node metastasis and distant metastasis. The ROC curve showed that the area under the curve of MECOM was 0.804 for LUAD and, of note, could reach 0.889 for advanced LUAD; specificity was up to 90%. Conclusion: MECOM may contribute to independently identifying LUAD patients, particularly in advanced stages.
Collapse
Affiliation(s)
- Anqi Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Li
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Wang
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| | - Jiejun Zhou
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tian Yang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meng Fan
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kun Zhang
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hengxing Gao
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hui Ren
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Mingwei Chen
- Department of Respiratory & Critical Care Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Department of Pulmonary & Critical Care Medicine, Shaanxi Provincial Second People's Hospital, Xi'an, 710005, China
| |
Collapse
|
7
|
EVI1 Promotes the Proliferation and Invasive Properties of Human Head and Neck Squamous Cell Carcinoma Cells. Int J Mol Sci 2022; 23:ijms23031050. [PMID: 35162973 PMCID: PMC8835242 DOI: 10.3390/ijms23031050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a frequent malignancy with a poor prognosis. So far, the EGFR inhibitor cetuximab is the only approved targeted therapy. A deeper understanding of the molecular and genetic basis of HNSCC is needed to identify additional targets for rationally designed, personalized therapeutics. The transcription factor EVI1, the major product of the MECOM locus, is an oncoprotein with roles in both hematological and solid tumors. In HNSCC, high EVI1 expression was associated with an increased propensity to form lymph node metastases, but its effects in this tumor entity have not yet been determined experimentally. We therefore overexpressed or knocked down EVI1 in several HNSCC cell lines and determined the impact of these manipulations on parameters relevant to tumor growth and invasiveness, and on gene expression patterns. Our results revealed that EVI1 promoted the proliferation and migration of HNSCC cells. Furthermore, it augmented tumor spheroid formation and the ability of tumor spheroids to displace an endothelial cell layer. Finally, EVI1 altered the expression of numerous genes in HNSCC cells, which were enriched for Gene Ontology terms related to its cellular functions. In summary, EVI1 represents a novel oncogene in HNSCC that contributes to cellular proliferation and invasiveness.
Collapse
|