1
|
Shiozawa Y, Parajuli KR, Pienta K, Taichman R. Role of Chemokines and Cytokines in Prostate Cancer Skeletal Metastasis. Curr Osteoporos Rep 2024; 23:3. [PMID: 39585513 DOI: 10.1007/s11914-024-00897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 11/26/2024]
Abstract
PURPOSE OF REVIEW Once prostate cancer (PCa) bone metastases develop, the prognosis dramatically declines. The precise mechanisms regulating bone metastasis remain elusive. This review will explore recent findings related to cytokines and chemokines in the process of bone metastases. RECENT FINDINGS We discuss the role of cytokines in tumor growth, invasion, bone remodelling and angiogenesis and immune regulation in PCa skeletal metastases. Major advances in our understanding focus on immune evasion, immune checkpoint blockade, tumor-associated macrophages (TAMs), CAR-T cells, cytokine regulation of matrix metalloproteinases, cytokines including IL-10, IL-27, Interferon-γ, prostate transmembrane protein androgen induced 1 (Pmepa1), and regulation of RUNX2 transcription in supporting survival and growth of disseminated tumor cells (DTCs) and metastases development. The review highlights the complexity of cytokine actions in PCa bone metastases, suggesting potential therapeutic targets to disrupt interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University Health Sciences, Winston-Salem, 27157, NC, USA.
| | - Keshab Raj Parajuli
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kenneth Pienta
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Russell Taichman
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, The Brady Urological Institute, 600 N. Wolfe St., Marburg Building Room 113, Baltimore, 21287, MD, USA.
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
- Department of Basic & Clinical Translational Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
McKinney LP, Singh R, Jordan IK, Varambally S, Dammer EB, Lillard JW. Transcriptome Analysis Identifies Tumor Immune Microenvironment Signaling Networks Supporting Metastatic Castration-Resistant Prostate Cancer. ONCO 2023; 3:81-95. [PMID: 38435029 PMCID: PMC10906979 DOI: 10.3390/onco3020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Prostate cancer (PCa) is the second most common cause of cancer death in American men. Metastatic castration-resistant prostate cancer (mCRPC) is the most lethal form of PCa and preferentially metastasizes to the bones through incompletely understood molecular mechanisms. Herein, we processed RNA sequencing data from patients with mCRPC (n = 60) and identified 14 gene clusters (modules) highly correlated with mCRPC bone metastasis. We used a novel combination of weighted gene co-expression network analysis (WGCNA) and upstream regulator and gene ontology analyses of clinically annotated transcriptomes to identify the genes. The cyan module (M14) had the strongest positive correlation (0.81, p = 4 × 10-15) with mCRPC bone metastasis. It was associated with two significant biological pathways through KEGG enrichment analysis (parathyroid hormone synthesis, secretion, and action and protein digestion and absorption). In particular, we identified 10 hub genes (ALPL, PHEX, RUNX2, ENPP1, PHOSPHO1, PTH1R, COL11A1, COL24A1, COL22A1, and COL13A1) using cytoHubba of Cytoscape. We also found high gene expression for collagen formation, degradation, absorption, cell-signaling peptides, and bone regulation processes through Gene Ontology (GO) enrichment analysis.
Collapse
Affiliation(s)
- Lawrence P. McKinney
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - I. King Jordan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Sooryanarayana Varambally
- Division of Molecular and Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Eric B. Dammer
- Department of Biochemistry Emory, University School of Medicine, Atlanta, GA 30329, USA
| | - James W. Lillard
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
3
|
RUNX Proteins as Epigenetic Modulators in Cancer. Cells 2022; 11:cells11223687. [PMID: 36429115 PMCID: PMC9688118 DOI: 10.3390/cells11223687] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 11/22/2022] Open
Abstract
RUNX proteins are highly conserved in metazoans and perform critical functions during development. Dysregulation of RUNX proteins through various molecular mechanisms facilitates the development and progression of various cancers, where different RUNX proteins show tumor type-specific functions and regulate different aspects of tumorigenesis by cross-talking with different signaling pathways such as Wnt, TGF-β, and Hippo. Molecularly, they could serve as transcription factors (TFs) to activate their direct target genes or interact with many other TFs to modulate chromatin architecture globally. Here, we review the current knowledge on the functions and regulations of RUNX proteins in different cancer types and highlight their potential role as epigenetic modulators in cancer.
Collapse
|
4
|
Huang J, Freyhult E, Buckland R, Josefsson A, Damber JE, Welén K. Osteoclasts directly influence castration-resistant prostate cancer cells. Clin Exp Metastasis 2022; 39:801-814. [PMID: 35971022 PMCID: PMC9474581 DOI: 10.1007/s10585-022-10179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Metastasis to bone is the leading cause of death from prostate cancer. Interaction between tumor cells and bone cells can promote progression and influence tumor phenotype. It is known that prostate cancer cells support osteoclast differentiation, and degradation of bone matrix by osteoclasts releases growth factors stimulating tumor cell proliferation and invasion. In the present study osteolytic (PC-3) and osteoblastic (LNCaP-19) castration-resistant prostate cancer (CRPC) cells were co-cultured with mature osteoclasts or their precursor cells (RAW 264.7) to characterize direct effects of mature osteoclasts on CRPC cells. Osteoclasts increased proliferation and decrease apoptosis of CRPC cells as assessed with flow cytometry. RNA sequencing revealed that osteolytic CRPC cells were more responsive to osteoclast stimulation regarding gene expression, but the overall induced expression patterns were similar between the prostate cancer cell lines. Genes related to DNA repair were upregulated by osteoclasts, while genes related to endoplasmic reticulum stress-induced apoptosis and cholesterol synthesis were downregulated. The results of this study shows that osteoclasts directly influence CRPC cells, increasing proliferation, decreasing apoptosis, and affecting gene expression pathways that can affect sensitivity to DNA damage and endoplasmic reticulum function. This suggests targeting of osteoclasts to be a possible way to affect efficacy of other drugs by combination regimens in treating prostate cancer metastases.
Collapse
Affiliation(s)
- Junchi Huang
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Freyhult
- Department of Cell and Molecular Biology, Science for Life Laboratory, National Bioinformatics Infrastructure Sweden, Uppsala University, 75124, Uppsala, Sweden
| | - Robert Buckland
- Department of Surgical and Perioperative Sciences, Umeå University, Urology & Andrology, Umeå, Sweden
| | - Andreas Josefsson
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Surgical and Perioperative Sciences, Umeå University, Urology & Andrology, Umeå, Sweden
- Wallenberg Center for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Jan-Erik Damber
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Welén
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|