1
|
Schofield LG, Endacott SK, Delforce SJ, Lumbers ER, Pringle KG. Importance of the (Pro)renin Receptor in Activating the Renin-Angiotensin System During Normotensive and Preeclamptic Pregnancies. Curr Hypertens Rep 2024; 26:483-495. [PMID: 39093387 PMCID: PMC11455731 DOI: 10.1007/s11906-024-01316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE OF REVIEW For a healthy pregnancy to occur, a controlled interplay between the maternal circulating renin-angiotensin-aldosterone system (RAAS), placental renin-angiotensin system (RAS) and intrarenal renin-angiotensin system (iRAS) is necessary. Functionally, both the RAAS and iRAS interact to maintain blood pressure and cardiac output, as well as fluid and electrolyte balance. The placental RAS is important for placental development while also influencing the maternal circulating RAAS and iRAS. This narrative review concentrates on the (pro)renin receptor ((P)RR) and its soluble form (s(P)RR) in the context of the hypertensive pregnancy pathology, preeclampsia. RECENT FINDINGS The (P)RR and the s(P)RR have become of particular interest as not only can they activate prorenin and renin, thus influencing levels of angiotensin II (Ang II), but s(P)RR has now been shown to directly interact with and stimulate the Angiotensin II type 1 receptor (AT1R). Levels of both placental (P)RR and maternal circulating s(P)RR are elevated in patients with preeclampsia. Furthermore, s(P)RR has been shown to increase blood pressure in non-pregnant and pregnant rats and mice. In preeclamptic pregnancies, which are characterised by maternal hypertension and impaired placental development and function, we propose that there is enhanced secretion of s(P)RR from the placenta into the maternal circulation. Due to its ability to both activate prorenin and act as an AT1R agonist, excess maternal circulating s(P)RR can act on both the maternal vasculature, and the kidney, leading to RAS over-activation. This results in dysregulation of the maternal circulating RAAS and overactivation of the iRAS, contributing to maternal hypertension, renal damage, and secondary changes to neurohumoral regulation of fluid and electrolyte balance, ultimately contributing to the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Lachlan G Schofield
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Saije K Endacott
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Sarah J Delforce
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia
| | - Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, N.S.W, 2308, Australia.
- Womens Health Research Program, Hunter Medical Research Institute, New Lambton Heights, N.S.W, 2305, Australia.
- Hunter Medical Research Institute, Lot 1 Kookaburra Circuit, New Lambton, N.S.W, 2305, Australia.
| |
Collapse
|
2
|
Guimarães Júnior OF, Pereira de Oliveira GL, Farias Lelis DD, Faria Baldo TDO, Baldo MP, Sousa Santos SH, Andrade JMO. Expression levels of ACE and ACE2 in the placenta and white adipose tissue of lean and obese pregnant women. Biomarkers 2024; 29:434-441. [PMID: 39348715 DOI: 10.1080/1354750x.2024.2411346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/22/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND This study evaluated the expression of ACE and ACE2 in the placenta and white adipose tissue in lean and obese women, and correlated their levels with anthropometric, clinical, and laboratory parameters, and tissue count of inflammatory cells. METHODS A cross-sectional analytical study was performed with 49 pregnant women and their respective newborns. Samples of placenta and adipose tissue were used for measuring mRNA expression for ACE and ACE2 through qRT-PCR. Inflammatory cell counting was performed through conventional microscopy. RESULTS An increase in ACE expression and a decrease in ACE2 were observed in the placenta and adipose tissue of women with obesity. ACE2 levels showed a negative correlation with pre-pregnancy BMI and total cholesterol. CONCLUSION Maternal obesity can modulate the expression of RAS components in the placenta and white adipose tissue, with ACE2 correlated with pre-pregnancy BMI and total cholesterol.
Collapse
Affiliation(s)
- Orcione Ferreira Guimarães Júnior
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
| | - Gabriel Ledo Pereira de Oliveira
- Department of Medicine, Santo Agostinho College - Afya Educacional (Faculdade Santo Agostinho), FASA, Vitória da Conquista, Bahia, Brazil
| | - Deborah de Farias Lelis
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | | | - Marcelo Perim Baldo
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| | - João Marcus Oliveira Andrade
- Graduate Program in Health Sciences (Programa de Pós-Graduação em Ciências da Saúde - PPGCS), State University of Montes Claros (Universidade Estadual de Montes Claros - Unimontes), Montes Claros, Minas Gerais, Brazil
- Department of Pathophysiology, Unimontes, Montes Claros, Minas Gerais, Brazil
- Graduate Program in Food and Health (Programa de Pós-Graduação em Alimentos e Saúde - PPGAS, Federal University of Minas Gerais (Universidade Federal de Minas Gerais - UFMG), Montes Claros, Minas Gerais, Brazil
| |
Collapse
|
3
|
Wang H, Liu J, Fang F, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Losartan ameliorates renal fibrosis by inhibiting tumor necrosis factor signal pathway. Nefrologia 2024; 44:139-149. [PMID: 38697694 DOI: 10.1016/j.nefroe.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/03/2023] [Indexed: 05/05/2024] Open
Abstract
Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-β1 (TGF-β1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050091, China.
| |
Collapse
|
4
|
Vrachnis D, Fotiou A, Mantzou A, Pergialiotis V, Antsaklis P, Valsamakis G, Stavros S, Machairiotis N, Iavazzo C, Kanaka-Gantenbein C, Mastorakos G, Drakakis P, Vrachnis N, Antonakopoulos N. Second Trimester Amniotic Fluid Angiotensinogen Levels Linked to Increased Fetal Birth Weight and Shorter Gestational Age in Term Pregnancies. Life (Basel) 2024; 14:206. [PMID: 38398716 PMCID: PMC10890398 DOI: 10.3390/life14020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Despite the considerable progress made in recent years in fetal assessment, the etiology of fetal growth disturbances is not as yet well understood. In an effort to enhance our knowledge in this area, we investigated the associations of the amniotic fluid angiotensinogen of the renin-angiotensin system with fetal growth abnormalities. METHODS We collected amniotic fluid samples from 70 pregnant women who underwent amniocentesis during their early second trimester. Birth weight was documented upon delivery, after which the embryos corresponding to the respective amniotic fluid samples were categorized into three groups as follows: small for gestational age (SGA), appropriate for gestational age (AGA), and large for gestational age (LGA). Amniotic fluid angiotensinogen levels were determined by using ELISA kits. RESULTS Mean angiotensinogen values were 3885 ng/mL (range: 1625-5375 ng/mL), 4885 ng/mL (range: 1580-8460 ng/mL), and 4670 ng/mL (range: 1995-7250 ng/mL) in the SGA, LGA, and AGA fetuses, respectively. The concentrations in the three groups were not statistically significantly different. Although there were wide discrepancies between the mean values of the subgroups, the large confidence intervals in the three groups negatively affected the statistical analysis. However, multiple regression analysis revealed a statistically significant negative correlation between the angiotensinogen levels and gestational age and a statistically significant positive correlation between the birth weight and angiotensinogen levels. DISCUSSION Our findings suggest that fetal growth abnormalities did not correlate with differences in the amniotic fluid levels of angiotensinogen in early second trimester pregnancies. However, increased angiotensinogen levels were found to be consistent with a smaller gestational age at birth and increased BMI of neonates.
Collapse
Affiliation(s)
- Dionysios Vrachnis
- National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Alexandros Fotiou
- National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece; (D.V.); (A.F.)
| | - Aimilia Mantzou
- Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (C.K.-G.)
| | - Vasilios Pergialiotis
- First Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Alexandra Hospital, 11527 Athens, Greece; (V.P.); (P.A.)
| | - Panagiotis Antsaklis
- First Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Alexandra Hospital, 11527 Athens, Greece; (V.P.); (P.A.)
| | - George Valsamakis
- Second Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Aretaieion Hospital, 11527 Athens, Greece;
| | - Sofoklis Stavros
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, 11527 Athens, Greece; (S.S.); (N.M.); (P.D.)
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, 11527 Athens, Greece; (S.S.); (N.M.); (P.D.)
| | - Christos Iavazzo
- Department of Gynecologic Oncology, Metaxa Memorial Cancer Hospital of Piraeus, 18537 Piraeus, Greece;
| | - Christina Kanaka-Gantenbein
- Aghia Sophia Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.M.); (C.K.-G.)
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, National and Kapodistrian University of Athens Medical School, Aretaieion Hospital, 11527 Athens, Greece;
| | - Petros Drakakis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, 11527 Athens, Greece; (S.S.); (N.M.); (P.D.)
| | - Nikolaos Vrachnis
- Third Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, 11527 Athens, Greece; (S.S.); (N.M.); (P.D.)
- Vascular Biology, Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK
| | - Nikolaos Antonakopoulos
- Department of Obstetrics and Gynecology, University Hospital of Patras, Medical School, University of Patras, 26504 Patra, Greece
| |
Collapse
|
5
|
Planchais C, Reyes‐Ruiz A, Lacombe R, Zarantonello A, Lecerf M, Revel M, Roumenina LT, Atanasov BP, Mouquet H, Dimitrov JD. Evolutionary trajectory of receptor binding specificity and promiscuity of the spike protein of SARS-CoV-2. Protein Sci 2022; 31:e4447. [PMID: 36305765 PMCID: PMC9597384 DOI: 10.1002/pro.4447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 01/27/2023]
Abstract
SARS-CoV-2 infects cells by attachment to its receptor-the angiotensin converting enzyme 2 (ACE2). Regardless of the wealth of structural data, little is known about the physicochemical mechanism of interactions of the viral spike (S) protein with ACE2 and how this mechanism has evolved during the pandemic. Here, we applied experimental and computational approaches to characterize the molecular interaction of S proteins from SARS-CoV-2 variants of concern (VOC). Data on kinetics, activation-, and equilibrium thermodynamics of binding of the receptor binding domain (RBD) from VOC with ACE2 as well as data from computational protein electrostatics revealed a profound remodeling of the physicochemical characteristics of the interaction during the evolution. Thus, as compared to RBDs from Wuhan strain and other VOC, Omicron RBD presented as a unique protein in terms of conformational dynamics and types of non-covalent forces driving the complex formation with ACE2. Viral evolution resulted in a restriction of the RBD structural dynamics, and a shift to a major role of polar forces for ACE2 binding. Further, we investigated how the reshaping of the physicochemical characteristics of interaction affects the binding specificity of S proteins. Data from various binding assays revealed that SARS-CoV-2 Wuhan and Omicron RBDs manifest capacity for promiscuous recognition of unrelated human proteins, but they harbor distinct reactivity patterns. These findings might contribute for mechanistic understanding of the viral tropism and capacity to evade immune responses during evolution.
Collapse
Affiliation(s)
- Cyril Planchais
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Alejandra Reyes‐Ruiz
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Robin Lacombe
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Alessandra Zarantonello
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Maxime Lecerf
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Margot Revel
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Lubka T. Roumenina
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| | - Boris P. Atanasov
- Institute of Organic Chemistry, Bulgarian Academy of SciencesSofiaBulgaria
| | - Hugo Mouquet
- Laboratory of Humoral ImmunologyInstitut Pasteur, Université Paris Cité, INSERM U1222ParisFrance
| | - Jordan D. Dimitrov
- Centre de Recherche des CordeliersINSERM, CNRS, Sorbonne Université, Université de ParisParisFrance
| |
Collapse
|
6
|
Liu Y, Hao H, Lan T, Jia R, Cao M, Zhou L, Zhao Z, Pan W. Physiological and pathological roles of Ang II and Ang- (1-7) in the female reproductive system. Front Endocrinol (Lausanne) 2022; 13:1080285. [PMID: 36619582 PMCID: PMC9817105 DOI: 10.3389/fendo.2022.1080285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
The local Renin-Angiotensin System (RAS) has been demonstrated to exist in a wide range of tissues and organs, In the female reproductive system, it is mainly found in the ovary, uterus and placenta. The RAS system is made up of a series of active substances and enzymes, in addition to the circulating endocrine renin-angiotensin system. The active peptides Angiotensin II (Ang II) and Angiotensin (1-7) (Ang-(1-7)), in particular, appear to have distinct activities in the local RAS system, which also controls blood pressure and electrolytes. Therefore, in addition to these features, angiotensin and its receptors in the reproductive system seemingly get involved in reproductive processes, such as follicle growth and development, as well as physiological functions of the placenta and uterus. In addition, changes in local RAS components may induce reproductive diseases as well as pathological states such as cancer. In most tissues, Ang II and Ang- (1-7) seem to maintain antagonistic effects, but this conclusion is not always true in the reproductive system, where they play similar functions in some physiological and pathological roles. This review investigated how Ang II, Ang- (1-7) and their receptors were expressed, localized, and active in the female reproductive system. This review also summarized their effects on follicle development, uterine and placental physiological functions. The changes of local RAS components in a series of reproductive system diseases including infertility related diseases and cancer and their influence on the occurrence and development of diseases were elucidated. This article reviews the physiological and pathological roles of Ang II and Ang- (1-7) in female reproductive system,a very intricate system of tissue factors that operate as agonists and antagonists was found. Besides, the development of novel therapeutic strategies targeting components of this system may be a research direction in future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haomeng Hao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tingting Lan
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Jia
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, Guangdong, China
| | - Mingya Cao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liang Zhou
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhiming Zhao
- Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| | - Wensen Pan
- Second Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- *Correspondence: Wensen Pan, ; Zhiming Zhao,
| |
Collapse
|