1
|
Rehman G, Srivastav AK, Rizvi S, Chhabra A, Tyagi RK. Disease-associated SNP variants of THRβ: Insights into the molecular determinants of aberrant receptor function. Mol Cell Endocrinol 2025; 606:112585. [PMID: 40419015 DOI: 10.1016/j.mce.2025.112585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/28/2025] [Accepted: 05/21/2025] [Indexed: 05/28/2025]
Abstract
Thyroid hormone receptor beta (THRβ) is a ligand-modulated transcription factor that regulates thyroid hormone (T3)-mediated genomic actions. It regulates the hypothalamus-pituitary-thyroid axis and various metabolic processes, primarily in the liver and kidney. Research has shown that genetic variations, mainly single nucleotide polymorphism (SNP) in the THRB gene, may be linked to diseases like resistance to thyroid hormone, thyroid-related cancers, neurological and mental disorders. Despite this revelation, a significant gap remains in understanding the impact of SNPs on THRβ cellular function and disease etiology. Thus, the present study investigated the disease-associated missense THRβ-SNPs using both in silico analysis and cell-based assays. The study was initiated with computational analysis of disease-associated THRβ variants to predict the effects of SNPs on receptor conformation, structure, stability, and function. The molecular docking and simulation approach then evaluated the impact of these variants on interactions with T3 and RXR. Following this, an extensive investigation was conducted into the dynamics and functioning of these receptor variants to address the underlying deviations in their cellular functioning by assessing receptor-subcellular localization, response to T3 hormone, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions encountered in healthy and disease states. The study emphasizes that the structural and conformational integrity of THRβ is essential for its normal function, and critical deviations are associated with several metabolic/endocrine disease states. A comprehensive analysis of these disease-associated THRβ variants suggests the prospects of personalized medicine and the development of SNP-based genomic tests. The findings may also facilitate the discovery of novel small-molecule modulators to treat thyroid-related diseases linked to THRβ dysfunction, improving diagnosis and management of disease conditions.
Collapse
Affiliation(s)
- Ghausiya Rehman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Allison LA. Hormone receptor trafficking in health and disease. Mol Cell Endocrinol 2024; 593:112334. [PMID: 39059458 DOI: 10.1016/j.mce.2024.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
|
3
|
Kashyap J, Chhabra A, Kumari N, Tyagi RK. Nuclear localization signal in nuclear receptor VDR facilitates the mitotic genome bookmarking by involving distinct amino acid residues. Mol Cell Endocrinol 2024; 589:112233. [PMID: 38616036 DOI: 10.1016/j.mce.2024.112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Mitotic genome-bookmarking preserves epigenetic information, re-establishing progenitor's gene expression profile through transcription factors, chromatin remodelers, and histone modifiers, thereby regulating cell fate and lineage commitment post-mitotically in progeny cells. Our recent study revealed that the constitutive association of VDR with mitotic chromatin involves its DNA-binding domain. However, amino acid residues in this domain, crucial for genome bookmarking, remain elusive. This study demonstrates that nuclear localization signal (NLS) residues between 49 and 55 amino acids in VDR are essential for receptor-chromatin interaction during mitosis. Furthermore, it is revealed that both bipartite nature of VDR-NLS region and N-terminally located positively charged arginine residues are critical for its 'genome-bookmarking' property. Since mitotic chromatin association of heterodimeric partner RXR depends on VDR-chromatin association, interventions in VDR binding also abort RXR-chromatin interaction. Overall, this study documents the mechanistic details underlying VDR-chromatin interactions in genome-bookmarking behavior, potentially aiding in comprehending VDR-mediated diseases attributed to certain SNPs.
Collapse
Affiliation(s)
- Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ayushi Chhabra
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Neha Kumari
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India; Special Centre for Systems Medicine (Concurrent Faculty), Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
4
|
Budzyński MA, Wong AK, Faghihi A, Teves SS. A dynamic role for transcription factors in restoring transcription through mitosis. Biochem Soc Trans 2024; 52:821-830. [PMID: 38526206 PMCID: PMC11088908 DOI: 10.1042/bst20231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
Mitosis involves intricate steps, such as DNA condensation, nuclear membrane disassembly, and phosphorylation cascades that temporarily halt gene transcription. Despite this disruption, daughter cells remarkably retain the parent cell's gene expression pattern, allowing for efficient transcriptional memory after division. Early studies in mammalian cells suggested that transcription factors (TFs) mark genes for swift reactivation, a phenomenon termed 'mitotic bookmarking', but conflicting data emerged regarding TF presence on mitotic chromosomes. Recent advancements in live-cell imaging and fixation-free genomics challenge the conventional belief in universal formaldehyde fixation, revealing dynamic TF interactions during mitosis. Here, we review recent studies that provide examples of at least four modes of TF-DNA interaction during mitosis and the molecular mechanisms that govern these interactions. Additionally, we explore the impact of these interactions on transcription initiation post-mitosis. Taken together, these recent studies call for a paradigm shift toward a dynamic model of TF behavior during mitosis, underscoring the need for incorporating dynamics in mechanistic models for re-establishing transcription post-mitosis.
Collapse
Affiliation(s)
- Marek A. Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Alexander K.L. Wong
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Armin Faghihi
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S. Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Rehman G, Kashyap J, Srivastav AK, Rizvi S, Kumar U, Tyagi RK. Truncated variants of thyroid hormone receptor beta display disease-inflicting malfunctioning at cellular level. Exp Cell Res 2024; 437:114017. [PMID: 38555013 DOI: 10.1016/j.yexcr.2024.114017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Thyroid hormone receptor β (THRβ) is a member of the nuclear receptor superfamily of ligand-modulated transcription factors. Upon ligand binding, THRβ sequentially recruits the components of transcriptional machinery to modulate target gene expression. In addition to regulating diverse physiological processes, THRβ plays a crucial role in hypothalamus-pituitary-thyroid axis feedback regulation. Anomalies in THRβ gene/protein structure are associated with onset of diverse disease states. In this study, we investigated disease-inflicting truncated variants of THRβ using in-silico analysis and cell-based assays. We examined the THRβ truncated variants on multiple test parameters, including subcellular localization, ligand-receptor interactions, transcriptional functions, interaction with heterodimeric partner RXR, and receptor-chromatin interactions. Moreover, molecular dynamic simulation approaches predicted that shortened THRβ-LBD due to point mutations contributes proportionally to the loss of structural integrity and receptor stability. Deviant subcellular localization and compromised transcriptional function were apparent with these truncated variants. Present study shows that 'mitotic bookmarking' property of some THRβ variants is also affected. The study highlights that structural and conformational attributes of THRβ are necessary for normal receptor functioning, and any deviations may contribute to the underlying cause of the inflicted diseases. We anticipate that insights derived herein may contribute to improved mechanistic understanding to assess disease predisposition.
Collapse
Affiliation(s)
- Ghausiya Rehman
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jyoti Kashyap
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Amit Kumar Srivastav
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India
| | - Sheeba Rizvi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Umesh Kumar
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, Gujarat, 382030, India; Nutrition Biology Department, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Wani SA, Hussain S, Gray JS, Nayak D, Tang H, Perez LM, Long MD, Siddappa M, McCabe CJ, Sucheston-Campbell LE, Freeman MR, Campbell MJ. Epigenetic disruption of the RARγ complex impairs its function to bookmark AR enhancer interactions required for enzalutamide sensitivity in prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.15.571947. [PMID: 38168185 PMCID: PMC10760102 DOI: 10.1101/2023.12.15.571947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The current study in prostate cancer (PCa) focused on the genomic mechanisms at the cross-roads of pro-differentiation signals and the emergence of lineage plasticity. We explored an understudied cistromic mechanism involving RARγ's ability to govern AR cistrome-transcriptome relationships, including those associated with more aggressive PCa features. The RARγ complex in PCa cell models was enriched for canonical cofactors, as well as proteins involved in RNA processing and bookmarking. Identifying the repertoire of miR-96 bound and regulated gene targets, including those recognition elements marked by m6A, revealed their significant enrichment in the RARγ complex. RARγ significantly enhanced the AR cistrome, particularly in active enhancers and super-enhancers, and overlapped with the binding of bookmarking factors. Furthermore, RARγ expression led to nucleosome-free chromatin enriched with H3K27ac, and significantly enhanced the AR cistrome in G2/M cells. RARγ functions also antagonized the transcriptional actions of the lineage master regulator ONECUT2. Similarly, gene programs regulated by either miR-96 or antagonized by RARγ were enriched in alternative lineages and more aggressive PCa phenotypes. Together these findings reveal an under-investigated role for RARγ, modulated by miR-96, to bookmark enhancer sites during mitosis. These sites are required by the AR to promote transcriptional competence, and emphasize luminal differentiation, while antagonizing ONECUT2.
Collapse
Affiliation(s)
- Sajad A Wani
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jaimie S Gray
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Hancong Tang
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Lillian M Perez
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Mark D Long
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263
| | - Manjunath Siddappa
- Division of Pharmaceutics and Pharmacology, The Ohio State University, Columbus, OH 43210
| | - Christopher J McCabe
- Institute of Metabolism and Systems Research (IMSR), and Centre of Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham, UK
| | | | - Michael R Freeman
- Division of Cancer Therapeutics, Cedars Sinai Cancer, Departments of Urology and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Moray J Campbell
- Division of Cancer Biology, Cedars Sinai Cancer, and Los Angeles, CA 90048
- Board of Governors Innovation Center, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|