1
|
Kumar J, Popescu GK, Gantz SC. GluD receptors are functional ion channels. Biophys J 2023; 122:2383-2395. [PMID: 37177782 PMCID: PMC10323023 DOI: 10.1016/j.bpj.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023] Open
Abstract
In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.
Collapse
Affiliation(s)
- Janesh Kumar
- Laboratory of Membrane Protein Biology, Council of Scientific and Industrial Research (CSIR)-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Gabriela K Popescu
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, SUNY, Buffalo, New York
| | - Stephanie C Gantz
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa; Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
2
|
Mansouri M, Kremser L, Nguyen TP, Kasugai Y, Caberlotto L, Gassmann M, Sarg B, Lindner H, Bettler B, Carboni L, Ferraguti F. Protein Networks Associated with Native Metabotropic Glutamate 1 Receptors (mGlu 1) in the Mouse Cerebellum. Cells 2023; 12:1325. [PMID: 37174725 PMCID: PMC10177021 DOI: 10.3390/cells12091325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
The metabotropic glutamate receptor 1 (mGlu1) plays a pivotal role in synaptic transmission and neuronal plasticity. Despite the fact that several interacting proteins involved in the mGlu1 subcellular trafficking and intracellular transduction mechanisms have been identified, the protein network associated with this receptor in specific brain areas remains largely unknown. To identify novel mGlu1-associated protein complexes in the mouse cerebellum, we used an unbiased tissue-specific proteomic approach, namely co-immunoprecipitation followed by liquid chromatography/tandem mass spectrometry analysis. Many well-known protein complexes as well as novel interactors were identified, including G-proteins, Homer, δ2 glutamate receptor, 14-3-3 proteins, and Na/K-ATPases. A novel putative interactor, KCTD12, was further investigated. Reverse co-immunoprecipitation with anti-KCTD12 antibodies revealed mGlu1 in wild-type but not in KCTD12-knock-out homogenates. Freeze-fracture replica immunogold labeling co-localization experiments showed that KCTD12 and mGlu1 are present in the same nanodomain in Purkinje cell spines, although at a distance that suggests that this interaction is mediated through interposed proteins. Consistently, mGlu1 could not be co-immunoprecipitated with KCTD12 from a recombinant mammalian cell line co-expressing the two proteins. The possibility that this interaction was mediated via GABAB receptors was excluded by showing that mGlu1 and KCTD12 still co-immunoprecipitated from GABAB receptor knock-out tissue. In conclusion, this study identifies tissue-specific mGlu1-associated protein clusters including KCTD12 at Purkinje cell synapses.
Collapse
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Leopold Kremser
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | | | - Yu Kasugai
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| | - Laura Caberlotto
- Centre for Computational and Systems Biology (COSBI), The Microsoft Research University of Trento, 38068 Rovereto, Italy;
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Bettina Sarg
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Herbert Lindner
- Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, 6020 Innsbruck, Austria; (L.K.); (B.S.); (H.L.)
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, 4056 Basel, Switzerland; (M.G.); (B.B.)
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
| | - Francesco Ferraguti
- Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria; (M.M.); (Y.K.)
| |
Collapse
|
3
|
Ahmad M, Stirmlinger N, Jan I, Stifel U, Lee S, Weingandt M, Kelp U, Bockmann J, Ignatius A, Böckers TM, Tuckermann J. Downregulation of the Autism Spectrum Disorder Gene Shank2 Decreases Bone Mass in Male Mice. JBMR Plus 2022; 7:e10711. [PMID: 36751416 PMCID: PMC9893268 DOI: 10.1002/jbm4.10711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Mutations of the postsynaptic scaffold protein Shank2 lead to autism spectrum disorders (ASD). These patients frequently suffer from higher fracture risk. Here, we investigated whether Shank2 directly regulates bone mass. We show that Shank2 is expressed in bone and that Shank2 levels are increased during osteoblastogenesis. Knockdown of Shank2 by siRNA targeting the encoding regions for PDZ and SAM domain inhibits osteoblastogenesis of primary murine calvarial osteoblasts. Shank2 knockout mice (Shank2 -/-) have a decreased bone mass due to reduced osteoblastogenesis and bone formation, whereas bone resorption remains unaffected. Induced pluripotent stem cells (iPSCs)-derived osteoblasts from a loss-of-function Shank2 mutation in a patient showed a significantly reduced osteoblast differentiation potential. Moreover, silencing of known Shank2 interacting proteins revealed that a majority of them promote osteoblast differentiation. From this we conclude that Shank2 and interacting proteins known from the central nervous system are decisive regulators in osteoblast differentiation. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | | | - Irfana Jan
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Ulrich Stifel
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Marcel Weingandt
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Ulrike Kelp
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| | - Jürgen Bockmann
- Institute for Anatomy and Cell BiologyUlm UniversityUlmGermany
| | - Anita Ignatius
- Institute of Orthopaedic Research and BiomechanicsUlm UniversityUlmGermany
| | | | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology (CME)Ulm UniversityUlmGermany
| |
Collapse
|
4
|
Jung S, Park M. Shank postsynaptic scaffolding proteins in autism spectrum disorder: Mouse models and their dysfunctions in behaviors, synapses, and molecules. Pharmacol Res 2022; 182:106340. [DOI: 10.1016/j.phrs.2022.106340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023]
|
5
|
Vyas Y, Cheyne JE, Lee K, Jung Y, Cheung PY, Montgomery JM. Shankopathies in the Developing Brain in Autism Spectrum Disorders. Front Neurosci 2022; 15:775431. [PMID: 35002604 PMCID: PMC8727517 DOI: 10.3389/fnins.2021.775431] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein–protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in SHANKs reflect their importance to synapse development and plasticity. This is evident in autism spectrum disorder (ASD), a neurodevelopmental disorder resulting in behavioural changes including repetitive behaviours, lack of sociability, sensory issues, learning, and language impairments. Human genetic studies have revealed ASD mutations commonly occur in SHANKs. Rodent models expressing these mutations display ASD behavioural impairments, and a subset of these deficits are rescued by reintroduction of Shank in adult animals, suggesting that lack of SHANK during key developmental periods can lead to permanent changes in the brain’s wiring. Here we explore the differences in synaptic function and plasticity from development onward in rodent Shank ASD models. To date the most explored brain regions, relate to the behavioural changes observed, e.g., the striatum, hippocampus, sensory, and prefrontal cortex. In addition, less-studied regions including the hypothalamus, cerebellum, and peripheral nervous system are also affected. Synaptic phenotypes include weakened but also strengthened synaptic function, with NMDA receptors commonly affected, as well as changes in the balance of excitation and inhibition especially in cortical brain circuits. The effects of shankopathies in activity-dependent brain wiring is an important target for therapeutic intervention. We therefore highlight areas of research consensus and identify remaining questions and challenges.
Collapse
Affiliation(s)
- Yukti Vyas
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pang Ying Cheung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Lin Z, Wu B, Paul MW, Li KW, Yao Y, Smal I, Proietti Onori M, Hasanbegovic H, Bezstarosti K, Demmers J, Houtsmuller AB, Meijering E, Hoebeek FE, Schonewille M, Smit AB, Gao Z, De Zeeuw CI. Protein Phosphatase 2B Dual Function Facilitates Synaptic Integrity and Motor Learning. J Neurosci 2021; 41:5579-5594. [PMID: 34021041 PMCID: PMC8244972 DOI: 10.1523/jneurosci.1741-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Protein phosphatase 2B (PP2B) is critical for synaptic plasticity and learning, but the molecular mechanisms involved remain unclear. Here we identified different types of proteins that interact with PP2B, including various structural proteins of the postsynaptic densities (PSDs) of Purkinje cells (PCs) in mice. Deleting PP2B reduced expression of PSD proteins and the relative thickness of PSD at the parallel fiber to PC synapses, whereas reexpression of inactive PP2B partly restored the impaired distribution of nanoclusters of PSD proteins, together indicating a structural role of PP2B. In contrast, lateral mobility of surface glutamate receptors solely depended on PP2B phosphatase activity. Finally, the level of motor learning covaried with both the enzymatic and nonenzymatic functions of PP2B. Thus, PP2B controls synaptic function and learning both through its action as a phosphatase and as a structural protein that facilitates synapse integrity.SIGNIFICANCE STATEMENT Phosphatases are generally considered to serve their critical role in learning and memory through their enzymatic operations. Here, we show that protein phosphatase 2B (PP2B) interacts with structural proteins at the synapses of cerebellar Purkinje cells. Differentially manipulating the enzymatic and structural domains of PP2B leads to different phenotypes in cerebellar learning. We propose that PP2B is crucial for cerebellar learning via two complementary actions, an enzymatic and a structural operation.
Collapse
Affiliation(s)
- Zhanmin Lin
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Bin Wu
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department of Neurology and Institute of Neurology, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Maarten W Paul
- Optical Imaging Center, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Yao Yao
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Ihor Smal
- Department of Medical informatics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Hana Hasanbegovic
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Jeroen Demmers
- Center for Proteomics, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | | | - Erik Meijering
- School of Computer Science and Engineering & Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, New South Wales, Australia
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital and Brain Center, Utrecht Medical Center, 3584 EA, Utrecht, The Netherlands
| | | | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam, Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, 3015 GE, Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, KNAW, 1105 BA, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Burada AP, Vinnakota R, Lambolez B, Tricoire L, Kumar J. Structural biology of ionotropic glutamate delta receptors and their crosstalk with metabotropic glutamate receptors. Neuropharmacology 2021; 196:108683. [PMID: 34181979 DOI: 10.1016/j.neuropharm.2021.108683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/31/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Enigmatic orphan glutamate delta receptors (GluD) are one of the four classes of the ionotropic glutamate receptors (iGluRs) that play key roles in synaptic transmission and plasticity. While members of other iGluR families viz AMPA, NMDA, and kainate receptors are gated by glutamate, the GluD receptors neither bind glutamate nor evoke ligand-induced currents upon binding of glycine and D-serine. Thus, the GluD receptors were considered to function as structural proteins that facilitate the formation, maturation, and maintenance of synapses in the hippocampus and cerebellum. Recent work has revealed that GluD receptors have extensive crosstalk with metabotropic glutamate receptors (mGlus) and are also gated by their activation. The latest development of a novel optopharamcological tool and the cryoEM structures of GluD receptors would help define the molecular and chemical basis of the GluD receptor's role in synaptic physiology. This article is part of the special Issue on "Glutamate Receptors - Orphan iGluRs".
Collapse
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India
| | - Bertrand Lambolez
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France
| | - Ludovic Tricoire
- Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
8
|
Dai J, Patzke C, Liakath-Ali K, Seigneur E, Südhof TC. GluD1 is a signal transduction device disguised as an ionotropic receptor. Nature 2021; 595:261-265. [PMID: 34135511 DOI: 10.1038/s41586-021-03661-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 05/20/2021] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate delta receptors 1 (GluD1) and 2 (GluD2) exhibit the molecular architecture of postsynaptic ionotropic glutamate receptors, but assemble into trans-synaptic adhesion complexes by binding to secreted cerebellins that in turn interact with presynaptic neurexins1-4. It is unclear whether neurexin-cerebellin-GluD1/2 assemblies serve an adhesive synapse-formation function or mediate trans-synaptic signalling. Here we show in hippocampal synapses, that binding of presynaptic neurexin-cerebellin complexes to postsynaptic GluD1 controls glutamate receptor activity without affecting synapse numbers. Specifically, neurexin-1-cerebellin-2 and neurexin-3-cerebellin-2 complexes differentially regulate NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors by activating distinct postsynaptic GluD1 effector signals. Of note, minimal GluD1 and GluD2 constructs containing only their N-terminal cerebellin-binding and C-terminal cytoplasmic domains, joined by an unrelated transmembrane region, fully control the levels of NMDA and AMPA receptors. The distinct signalling specificity of presynaptic neurexin-1 and neurexin-35,6 is encoded by their alternatively spliced splice site 4 sequences, whereas the regulatory functions of postsynaptic GluD1 are mediated by conserved cytoplasmic sequence motifs spanning 5-13 residues. Thus, GluDs are signalling molecules that regulate NMDA and AMPA receptors by an unexpected transduction mechanism that bypasses their ionotropic receptor architecture and directly converts extracellular neurexin-cerebellin signals into postsynaptic receptor responses.
Collapse
Affiliation(s)
- Jinye Dai
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| | - Christopher Patzke
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Kif Liakath-Ali
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Erica Seigneur
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Thomas C Südhof
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA. .,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
mGluR1 signaling in cerebellar Purkinje cells: Subcellular organization and involvement in cerebellar function and disease. Neuropharmacology 2021; 194:108629. [PMID: 34089728 DOI: 10.1016/j.neuropharm.2021.108629] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/20/2022]
Abstract
The cerebellum is essential for the control, coordination, and learning of movements, and for certain aspects of cognitive function. Purkinje cells are the sole output neurons in the cerebellar cortex and therefore play crucial roles in the diverse functions of the cerebellum. The type 1 metabotropic glutamate receptor (mGluR1) is prominently enriched in Purkinje cells and triggers downstream signaling pathways that are required for functional and structural plasticity, and for synaptic responses. To understand how mGluR1 contributes to cerebellar functions, it is important to consider not only the operational properties of this receptor, but also its spatial organization and the molecular interactions that enable its proper functioning. In this review, we highlight how mGluR1 and its related signaling molecules are organized into tightly coupled microdomains to fulfill physiological functions. We also describe emerging evidence that altered mGluR1 signaling in Purkinje cells underlies cerebellar dysfunction in ataxias of human patients and mouse models.
Collapse
|
10
|
Andrews PC, Dravid SM. An emerging map of glutamate delta 1 receptors in the forebrain. Neuropharmacology 2021; 192:108587. [PMID: 33992669 DOI: 10.1016/j.neuropharm.2021.108587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022]
Abstract
Glutamate delta 1 (GluD1) and glutamate delta 2 (GluD2) form the delta family of ionotropic glutamate receptors; these proteins plays widespread roles in synaptic architecture, motor behavior, and cognitive function. Though the role of GluD2 at cerebellar parallel fiber-Purkinje cell synapses is well established, attention now turns to the function of GluD receptors in the forebrain. GluD1 regulates synaptic assembly and modulation in multiple higher brain regions, acting as a postsynaptic cell adhesion molecule with effects on both excitatory and inhibitory transmission. Furthermore, variations and mutations in the GRID1 gene, which codes for GluD1, and in genes which code for proteins functionally linked to GluD1, are associated with mental disorders including autism, schizophrenia, bipolar disorder, and major depression. Cerebellin (Cbln) family proteins, the primary binding partners of delta receptors, are secreted C1q-like proteins which also bind presynaptic neurexins (NRXNs), forming a tripartite synaptic bridge. Published research explores this bridge's function in regions including the striatum, hippocampus, cortex, and cerebellum. In this review, we summarize region- and circuit-specific functions and expression patterns for GluD1 and its related proteins, and their implications for behavior and disease.
Collapse
Affiliation(s)
- Patrick C Andrews
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, NE, USA.
| |
Collapse
|
11
|
Chin AC, Lau AY. Structural biology and thermodynamics of GluD receptors. Neuropharmacology 2021; 191:108542. [PMID: 33845075 DOI: 10.1016/j.neuropharm.2021.108542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Glutamate delta (GluD) receptors are a functionally enigmatic subfamily of ionotropic glutamate receptors. Despite sharing similar sequences and structures with AMPA, NMDA, and kainate receptors, GluD receptors do not bind glutamate nor function as ligand-gated ion channels. Binding d-serine and engaging in transsynaptic protein-protein interactions, GluD receptors are thought to undergo complex conformational rearrangements for non-ionotropic signaling that regulates synaptic plasticity. Recent structural, biochemical, and computational studies have elucidated multiple conformational and thermodynamic factors governing the unique properties of GluD receptors. Here, we review advances in biophysical insights into GluD receptors and discuss the structural thermodynamic relationships that underpin their neurobiological functions.
Collapse
Affiliation(s)
- Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Yoshida T, Yamagata A, Imai A, Kim J, Izumi H, Nakashima S, Shiroshima T, Maeda A, Iwasawa-Okamoto S, Azechi K, Osaka F, Saitoh T, Maenaka K, Shimada T, Fukata Y, Fukata M, Matsumoto J, Nishijo H, Takao K, Tanaka S, Okabe S, Tabuchi K, Uemura T, Mishina M, Mori H, Fukai S. Canonical versus non-canonical transsynaptic signaling of neuroligin 3 tunes development of sociality in mice. Nat Commun 2021; 12:1848. [PMID: 33758193 PMCID: PMC7988105 DOI: 10.1038/s41467-021-22059-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Neuroligin 3 (NLGN3) and neurexins (NRXNs) constitute a canonical transsynaptic cell-adhesion pair, which has been implicated in autism. In autism spectrum disorder (ASD) development of sociality can be impaired. However, the molecular mechanism underlying NLGN3-mediated social development is unclear. Here, we identify non-canonical interactions between NLGN3 and protein tyrosine phosphatase δ (PTPδ) splice variants, competing with NRXN binding. NLGN3-PTPδ complex structure revealed a splicing-dependent interaction mode and competition mechanism between PTPδ and NRXNs. Mice carrying a NLGN3 mutation that selectively impairs NLGN3-NRXN interaction show increased sociability, whereas mice where the NLGN3-PTPδ interaction is impaired exhibit impaired social behavior and enhanced motor learning, with imbalance in excitatory/inhibitory synaptic protein expressions, as reported in the Nlgn3 R451C autism model. At neuronal level, the autism-related Nlgn3 R451C mutation causes selective impairment in the non-canonical pathway. Our findings suggest that canonical and non-canonical NLGN3 pathways compete and regulate the development of sociality.
Collapse
Affiliation(s)
- Tomoyuki Yoshida
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan. .,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan. .,JST PRESTO, Saitama, Japan.
| | | | - Ayako Imai
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Juhyon Kim
- Division of Bio-Information Engineering, Faculty of Engineering, University of Toyama, Toyama, Japan
| | - Hironori Izumi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shogo Nakashima
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Tomoko Shiroshima
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Asami Maeda
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Kenji Azechi
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Fumina Osaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Saitoh
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Katsumi Maenaka
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.,Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Takashi Shimada
- SHIMADZU Bioscience Research Partnership, Innovation Center, Shimadzu Scientific Instruments, Bothell, WA, USA
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Jumpei Matsumoto
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hisao Nishijo
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Keizo Takao
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.,Life Science Research Center, University of Toyama, Toyama, Japan
| | - Shinji Tanaka
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Tabuchi
- JST PRESTO, Saitama, Japan.,Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, Nagano, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan
| | - Takeshi Uemura
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Japan.,Division of Gene Research, Research Center for Supports to Advanced Science, Shinshu University, Nagano, Japan
| | - Masayoshi Mishina
- Brain Science Laboratory, Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Shuya Fukai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
13
|
Drastichova Z, Rudajev V, Pallag G, Novotny J. Proteome profiling of different rat brain regions reveals the modulatory effect of prolonged maternal separation on proteins involved in cell death-related processes. Biol Res 2021; 54:4. [PMID: 33557947 PMCID: PMC7871601 DOI: 10.1186/s40659-021-00327-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background Early-life stress in the form of maternal separation can be associated with alterations in offspring neurodevelopment and brain functioning. Here, we aimed to investigate the potential impact of prolonged maternal separation on proteomic profiling of prefrontal cortex, hippocampus and cerebellum of juvenile and young adult rats. A special attention was devoted to proteins involved in the process of cell death and redox state maintenance. Methods Long-Evans pups were separated from their mothers for 3 h daily over the first 3 weeks of life (during days 2–21 of age). Brain tissue samples collected from juvenile (22-day-old) and young adult (90-day-old) rats were used for label-free quantitative (LFQ) proteomic analysis. In parallel, selected oxidative stress markers and apoptosis-related proteins were assessed biochemically and by Western blot, respectively. Results In total, 5526 proteins were detected in our proteomic analysis of rat brain tissue. Approximately one tenth of them (586 proteins) represented those involved in cell death processes or regulation of oxidative stress balance. Prolonged maternal separation caused changes in less than half of these proteins (271). The observed alterations in protein expression levels were age-, sex- and brain region-dependent. Interestingly, the proteins detected by mass spectrometry that are known to be involved in the maintenance of redox state were not markedly altered. Accordingly, we did not observe any significant differences between selected oxidative stress markers, such as the levels of hydrogen peroxide, reduced glutathione, protein carbonylation and lipid peroxidation in brain samples from rats that underwent maternal separation and from the corresponding controls. On the other hand, a number of changes were found in cell death-associated proteins, mainly in those involved in the apoptotic and autophagic pathways. However, there were no detectable alterations in the levels of cleaved products of caspases or Bcl-2 family members. Taken together, these data indicate that the apoptotic and autophagic cell death pathways were not activated by maternal separation either in adolescent or young adult rats. Conclusion Prolonged maternal separation can distinctly modulate expression profiles of proteins associated with cell death pathways in prefrontal cortex, hippocampus and cerebellum of juvenile rats and the consequences of early-life stress may last into adulthood and likely participate in variations in stress reactivity. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-021-00327-5.
Collapse
Affiliation(s)
- Zdenka Drastichova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimir Rudajev
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gergely Pallag
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jiri Novotny
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
14
|
Ali M, McAuley MM, Lüchow S, Knapp S, Joerger AC, Ivarsson Y. Integrated analysis of Shank1 PDZ interactions with C-terminal and internal binding motifs. Curr Res Struct Biol 2021; 3:41-50. [PMID: 34235485 PMCID: PMC8244488 DOI: 10.1016/j.crstbi.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/02/2021] [Indexed: 12/27/2022] Open
Abstract
PDZ domains constitute a large family of modular domains that are well-known for binding C-terminal motifs of target proteins. Some of them also bind to internal PDZ binding motifs (PDZbms), but this aspect of the PDZ interactome is poorly studied. Here we explored internal PDZbm-mediated interactions using the PDZ domain of Shank1 as a model. We identified a series of human Shank1 ligands with C-terminal or internal PDZbms using proteomic peptide-phage display, and established that while the consensus sequence of C-terminal ligands is x-T-x-(L/F)-COOH, the consensus of internal PDZbm is exclusively x-T-x-F-x, where x is any amino acid. We found that the affinities of PDZbm interactions are in the low micromolar range. The crystal structure of the complex between Shank1 PDZ and an internal PDZbm revealed that the binding mode of internal PDZbms was similar to that of C-terminal ligands. Pull-down experiments confirmed that both C-terminal and internal PDZbm interactions can occur in the context of full-length proteins. Our study expands the interactome of Shank1 and hints at a largely unexplored interaction space of PDZ domains.
Collapse
Affiliation(s)
- Muhammad Ali
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Mishal Mariam McAuley
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Susanne Lüchow
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Andreas C. Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences (BMLS), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Ylva Ivarsson
- Department of Chemistry – BMC, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| |
Collapse
|
15
|
Burada AP, Vinnakota R, Bharti P, Dutta P, Dubey N, Kumar J. Emerging insights into the structure and function of ionotropic glutamate delta receptors. Br J Pharmacol 2020; 179:3612-3627. [DOI: 10.1111/bph.15313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Pratibha Bharti
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Priyanka Dutta
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| | - Neelima Dubey
- Molecular Neuroscience Research Lab Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth Tathawade Pune 411033 India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology National Centre for Cell Science, NCCS Complex, S. P. Pune University Pune India
| |
Collapse
|
16
|
Javed S, Selliah T, Lee YJ, Huang WH. Dosage-sensitive genes in autism spectrum disorders: From neurobiology to therapy. Neurosci Biobehav Rev 2020; 118:538-567. [PMID: 32858083 DOI: 10.1016/j.neubiorev.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/26/2020] [Accepted: 08/17/2020] [Indexed: 12/24/2022]
Abstract
Autism spectrum disorders (ASDs) are a group of heterogenous neurodevelopmental disorders affecting 1 in 59 children. Syndromic ASDs are commonly associated with chromosomal rearrangements or dosage imbalance involving a single gene. Many of these genes are dosage-sensitive and regulate transcription, protein homeostasis, and synaptic function in the brain. Despite vastly different molecular perturbations, syndromic ASDs share core symptoms including social dysfunction and repetitive behavior. However, each ASD subtype has a unique pathogenic mechanism and combination of comorbidities that require individual attention. We have learned a great deal about how these dosage-sensitive genes control brain development and behaviors from genetically-engineered mice. Here we describe the clinical features of eight monogenic neurodevelopmental disorders caused by dosage imbalance of four genes, as well as recent advances in using genetic mouse models to understand their pathogenic mechanisms and develop intervention strategies. We propose that applying newly developed quantitative molecular and neuroscience technologies will advance our understanding of the unique neurobiology of each disorder and enable the development of personalized therapy.
Collapse
Affiliation(s)
- Sehrish Javed
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Tharushan Selliah
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Yu-Ju Lee
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Wei-Hsiang Huang
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
17
|
Liu J, Shelkar GP, Gandhi PJ, Gawande DY, Hoover A, Villalba RM, Pavuluri R, Smith Y, Dravid SM. Striatal glutamate delta-1 receptor regulates behavioral flexibility and thalamostriatal connectivity. Neurobiol Dis 2020; 137:104746. [PMID: 31945419 PMCID: PMC7204410 DOI: 10.1016/j.nbd.2020.104746] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Accepted: 01/12/2020] [Indexed: 10/31/2022] Open
Abstract
Impaired behavioral flexibility and repetitive behavior is a common phenotype in autism and other neuropsychiatric disorders, but the underlying synaptic mechanisms are poorly understood. The trans-synaptic glutamate delta (GluD)-Cerebellin 1-Neurexin complex, critical for synapse formation/maintenance, represents a vulnerable axis for neuropsychiatric diseases. We have previously found that GluD1 deletion results in reversal learning deficit and repetitive behavior. In this study, we show that selective ablation of GluD1 from the dorsal striatum impairs behavioral flexibility in a water T-maze task. We further found that striatal GluD1 is preferentially found in dendritic shafts, and more frequently associated with thalamic than cortical glutamatergic terminals suggesting localization to projections from the thalamic parafascicular nucleus (Pf). Conditional deletion of GluD1 from the striatum led to a selective loss of thalamic, but not cortical, terminals, and reduced glutamatergic neurotransmission. Optogenetic studies demonstrated functional changes at thalamostriatal synapses from the Pf, but no effect on the corticostriatal system, upon ablation of GluD1 in the dorsal striatum. These studies suggest a novel molecular mechanism by which genetic variations associated with neuropsychiatric disorders may impair behavioral flexibility, and reveal a unique principle by which GluD1 subunit regulates forebrain circuits.
Collapse
Affiliation(s)
- Jinxu Liu
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Gajanan P Shelkar
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Pauravi J Gandhi
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Dinesh Y Gawande
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Andrew Hoover
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Rosa M Villalba
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA
| | - Ratnamala Pavuluri
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Atlanta, GA 30329, USA; Dept. Neurology, Emory University, Atlanta, GA 30329, USA
| | - Shashank M Dravid
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
18
|
Burada AP, Vinnakota R, Kumar J. Cryo-EM structures of the ionotropic glutamate receptor GluD1 reveal a non-swapped architecture. Nat Struct Mol Biol 2020; 27:84-91. [PMID: 31925409 PMCID: PMC7025878 DOI: 10.1038/s41594-019-0359-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/27/2019] [Indexed: 01/06/2023]
Abstract
Ionotropic orphan delta receptors (GluD) are not gated by glutamate or
any other endogenous ligand but are grouped with ionotropic glutamate receptors
based on sequence similarity. GluD1 receptors play critical roles in
synaptogenesis, synapse maintenance and have been implicated in neuronal
disorders including schizophrenia, cognitive deficits, and cerebral ataxia. Here
we report cryo-electron microscopy structures of the rat GluD1 receptor
complexed with calcium and the ligand 7-chlorokynurenic acid, elucidating
molecular architecture and principles of receptor assembly. The structures
reveal a non-swapped architecture at the extracellular amino-terminal (ATD) and
ligand-binding domain (LBD) interface. This is in contrast to other families of
ionotropic glutamate receptors (iGluRs) where the dimer partners between the ATD
and LBD layers are swapped. Our results demonstrate that principles of
architecture and symmetry are not conserved between delta receptors and other
iGluRs and provide a molecular blueprint for understanding the functions of the
“orphan” class of iGluRs.
Collapse
Affiliation(s)
- Ananth Prasad Burada
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Rajesh Vinnakota
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Pune, Maharashtra, India.
| |
Collapse
|
19
|
Endogenous calcitonin gene-related peptide suppresses ischemic brain injuries and progression of cognitive decline. J Hypertens 2019; 36:876-891. [PMID: 29266061 DOI: 10.1097/hjh.0000000000001649] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and produced by alternative splicing of the transcript of the calcitonin/CGRP gene. Originally identified as a strong vasodilatory and hypotensive peptide, CGRP is now known to be a pleiotropic molecule distributed in various organs, including the brain. METHOD In this study, we used CGRP knockout mice (CGRP-/-) to examine the actions of endogenous CGRP during cerebral ischemia. To induce acute and chronic cerebral ischemia, mice were subjected to middle cerebral artery occlusion (MCAO) and bilateral common carotid artery stenosis (BCAS). RESULTS In the cerebral cortex of wild-type mice, CGRP expression was upregulated after acute infarction. In CGRP-/- subjected to MCAO or BCAS, recovery of cerebral blood flow was slower and exhibited more extensive neuronal cell death. Expression of the inflammatory cytokines was higher in CGRP-/- than wild type in the acute phase of ischemia. Pathological analysis during the chronic phase revealed more extensive neuronal cell loss and demyelination and higher levels of oxidative stress in CGRP-/- than wild-type. CGRP-/- also showed less compensatory capillary growth. In an eight-arm radial maze test, CGRP-/- exhibited poorer reference memory than wild-type. On the other hand, CGRP administration promoted cerebral blood flow recovery after cerebral ischemia. We also found that CGRP directly inhibited the cell death of primary cortical neurons. CONCLUSION These results indicate endogenous CGRP is protective against ischemia-induced neuronal cell injury. CGRP could, thus, be a novel candidate for use in the treatment of both cerebral ischemia and progression of cognitive decline.
Collapse
|
20
|
Altered Glutamate Receptor Ionotropic Delta Subunit 2 Expression in Stau2-Deficient Cerebellar Purkinje Cells in the Adult Brain. Int J Mol Sci 2019; 20:ijms20071797. [PMID: 30979012 PMCID: PMC6480955 DOI: 10.3390/ijms20071797] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 01/13/2023] Open
Abstract
Staufen2 (Stau2) is an RNA-binding protein that is involved in dendritic spine morphogenesis and function. Several studies have recently investigated the role of Stau2 in the regulation of its neuronal target mRNAs, with particular focus on the hippocampus. Here, we provide evidence for Stau2 expression and function in cerebellar Purkinje cells. We show that Stau2 downregulation (Stau2GT) led to an increase of glutamate receptor ionotropic delta subunit 2 (GluD2) in Purkinje cells when animals performed physical activity by voluntary wheel running compared with the age-matched wildtype (WT) mice (C57Bl/6J). Furthermore, Stau2GT mice showed lower performance in motor coordination assays but enhanced motor learning abilities than did WT mice, concomitantly with an increase in dendritic GluD2 expression. Together, our results suggest the novel role of Stau2 in Purkinje cell synaptogenesis in the mouse cerebellum.
Collapse
|
21
|
Ha HTT, Leal-Ortiz S, Lalwani K, Kiyonaka S, Hamachi I, Mysore SP, Montgomery JM, Garner CC, Huguenard JR, Kim SA. Shank and Zinc Mediate an AMPA Receptor Subunit Switch in Developing Neurons. Front Mol Neurosci 2018; 11:405. [PMID: 30524232 PMCID: PMC6256285 DOI: 10.3389/fnmol.2018.00405] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/15/2018] [Indexed: 11/18/2022] Open
Abstract
During development, pyramidal neurons undergo dynamic regulation of AMPA receptor (AMPAR) subunit composition and density to help drive synaptic plasticity and maturation. These normal developmental changes in AMPARs are particularly vulnerable to risk factors for Autism Spectrum Disorders (ASDs), which include loss or mutations of synaptic proteins and environmental insults, such as dietary zinc deficiency. Here, we show how Shank2 and Shank3 mediate a zinc-dependent regulation of AMPAR function and subunit switch from GluA2-lacking to GluA2-containing AMPARs. Over development, we found a concomitant increase in Shank2 and Shank3 with GluA2 at synapses, implicating these molecules as potential players in AMPAR maturation. Since Shank activation and function require zinc, we next studied whether neuronal activity regulated postsynaptic zinc at glutamatergic synapses. Zinc was found to increase transiently and reversibly with neuronal depolarization at synapses, which could affect Shank and AMPAR localization and activity. Elevated zinc induced multiple functional changes in AMPAR, indicative of a subunit switch. Specifically, zinc lengthened the decay time of AMPAR-mediated synaptic currents and reduced their inward rectification in young hippocampal neurons. Mechanistically, both Shank2 and Shank3 were necessary for the zinc-sensitive enhancement of AMPAR-mediated synaptic transmission and act in concert to promote removal of GluA1 while enhancing recruitment of GluA2 at pre-existing Shank puncta. These findings highlight a cooperative local dynamic regulation of AMPAR subunit switch controlled by zinc signaling through Shank2 and Shank3 to shape the biophysical properties of developing glutamatergic synapses. Given the zinc sensitivity of young neurons and its dependence on Shank2 and Shank3, genetic mutations and/or environmental insults during early development could impair synaptic maturation and circuit formation that underlie ASD etiology.
Collapse
Affiliation(s)
- Huong T T Ha
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States.,Neurosciences Graduate Program, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sergio Leal-Ortiz
- Department of Material Science & Engineering, School of Engineering, Stanford University, Stanford, CA, United States
| | - Kriti Lalwani
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Shigeki Kiyonaka
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry & Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shreesh P Mysore
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, United States
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Craig C Garner
- German Center for Neurodegenerative Diseases (DZNE), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John R Huguenard
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Sally A Kim
- Department of Neurology & Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
22
|
Eltokhi A, Rappold G, Sprengel R. Distinct Phenotypes of Shank2 Mouse Models Reflect Neuropsychiatric Spectrum Disorders of Human Patients With SHANK2 Variants. Front Mol Neurosci 2018; 11:240. [PMID: 30072871 PMCID: PMC6060255 DOI: 10.3389/fnmol.2018.00240] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
The SHANK scaffolding proteins are important organizers for signaling proteins in the postsynapse of excitatory neurons. The functional significance of SHANK proteins becomes apparent by the wide spectrum of neurodevelopmental and neuropsychiatric disorders associated with SHANK variants in human patients. A similar diversity of neuropsychiatric-like phenotypes is described for numerous Shank2 and Shank3 knockout (KO) mouse lines. In this review, we will focus on and discuss the experimental results obtained from different, but genetically related and therefore comparable, Shank2 mouse models. First, we will describe the distinct SHANK2 variant-mediated neurodevelopmental and neuropsychiatric disorders in human patients. Then we will discuss the current knowledge of the expressed SHANK2 isoforms in the mouse, and we will describe the genetic strategies used for generating three conventional and seven conditional Shank2 mouse lines. The distinct impairments i.e., autistic-like and mania-like behavior and the alterations on the molecular, electrophysiological and behavioral levels will be compared between the different Shank2 mouse models. We will present our view as to why in these mouse models a spectrum of phenotypes can arise from similar Shank2 gene manipulations and how Shank2 mutant mice can be used and should be analyzed on the behavioral level in future research.
Collapse
Affiliation(s)
- Ahmed Eltokhi
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Gudrun Rappold
- Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Rolf Sprengel
- Max Planck Research Group "Molecular Neurobiology", Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
23
|
Ponna SK, Ruskamo S, Myllykoski M, Keller C, Boeckers TM, Kursula P. Structural basis for PDZ domain interactions in the post-synaptic density scaffolding protein Shank3. J Neurochem 2018; 145:449-463. [DOI: 10.1111/jnc.14322] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/07/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Srinivas Kumar Ponna
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Salla Ruskamo
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | - Corinna Keller
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
| | | | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu; University of Oulu; Oulu Finland
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
24
|
Mossa A, Giona F, Pagano J, Sala C, Verpelli C. SHANK genes in autism: Defining therapeutic targets. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:416-423. [PMID: 29175319 DOI: 10.1016/j.pnpbp.2017.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Adele Mossa
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Federica Giona
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Jessica Pagano
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Carlo Sala
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Verpelli
- CNR Neuroscience Institute, Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
25
|
Cell-Type-Specific Shank2 Deletion in Mice Leads to Differential Synaptic and Behavioral Phenotypes. J Neurosci 2018; 38:4076-4092. [PMID: 29572432 DOI: 10.1523/jneurosci.2684-17.2018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/27/2018] [Accepted: 03/10/2018] [Indexed: 12/14/2022] Open
Abstract
Shank2 is an excitatory postsynaptic scaffolding protein implicated in synaptic regulation and psychiatric disorders including autism spectrum disorders. Conventional Shank2-mutant (Shank2-/-) mice display several autistic-like behaviors, including social deficits, repetitive behaviors, hyperactivity, and anxiety-like behaviors. However, cell-type-specific contributions to these behaviors have remained largely unclear. Here, we deleted Shank2 in specific cell types and found that male mice lacking Shank2 in excitatory neurons (CaMKII-Cre;Shank2fl/fl) show social interaction deficits and mild social communication deficits, hyperactivity, and anxiety-like behaviors. In particular, male mice lacking Shank2 in GABAergic inhibitory neurons (Viaat-Cre;Shank2fl/fl) display social communication deficits, repetitive self-grooming, and mild hyperactivity. These behavioral changes were associated with distinct changes in hippocampal and striatal synaptic transmission in the two mouse lines. These results indicate that cell-type-specific deletions of Shank2 in mice lead to differential synaptic and behavioral abnormalities.SIGNIFICANCE STATEMENT Shank2 is an abundant excitatory postsynaptic scaffolding protein implicated in the regulation of excitatory synapses and diverse psychiatric disorders including autism spectrum disorders. Previous studies have reported in vivo functions of Shank2 mainly using global Shank2-null mice, but it remains largely unclear how individual cell types contribute to Shank2-dependent regulation of neuronal synapses and behaviors. Here, we have characterized conditional Shank2-mutant mice carrying the Shank2 deletion in excitatory and inhibitory neurons. These mouse lines display distinct alterations of synaptic transmission in the hippocampus and striatum that are associated with differential behavioral abnormalities in social, repetitive, locomotor, and anxiety-like domains.
Collapse
|
26
|
Uemura T, Shiroshima T, Maeda A, Yasumura M, Shimada T, Fukata Y, Fukata M, Yoshida T. In situ screening for postsynaptic cell adhesion molecules during synapse formation. J Biochem 2017; 162:295-302. [PMID: 28449070 DOI: 10.1093/jb/mvx030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 04/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neuronal synapse formation is regulated by pre- and postsynaptic cell adhesion molecules. Presynaptic neurexins (NRXNs) and receptor protein tyrosine phosphatases (RPTPs; PTPδ, PTPσ and LAR in mammals) can induce postsynaptic differentiation through the interaction with various postsynaptic cell adhesion molecules. Here, we developed a novel in situ screening method to identify postsynaptic membranous proteins involved in synaptogenesis. Magnetic beads coated with the extracellular domains of NRXN1β(-S4) and PTPδ-A6 variants preferentially induced excitatory postsynaptic differentiation on the beads' surface when co-cultured with cortical neurons. After inducing postsynaptic sites on these beads, protein complexes including NRXN1β(-S4)/PTPδ-A6 and their ligands on the neuronal membrane were chemically cross-linked and purified using a magnetic separator. Liquid chromatography-tandem mass spectrometry analysis of the complexes revealed two types of postsynaptic ligands for NRXN1β(-S4) and PTPδ-A6, one has an activity to induce presynaptic differentiation in a trans manner, whereas the other has no such activity. These results suggest that synapse formation is regulated by the interplay between presynaptic NRXN/PTPδ and their postsynaptic ligands with functionally different impacts on pre- and postsynaptic differentiation. Thus, our in situ screening method for identifying synapse-organizing complexes will help to understand the molecular basis for elaborate neuronal networks.
Collapse
Affiliation(s)
- Takeshi Uemura
- Department of Molecular and Cellular Physiology, Institute of Medicine, Academic Assembly, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.,CREST, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| | - Tomoko Shiroshima
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0073, Japan
| | - Asami Maeda
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0073, Japan
| | - Misato Yasumura
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Shimada
- Technology Research Laboratory, SHIMADZU Corporation, 380-1 Horiyamashita, Hadano, Kanagawa 259-1304, Japan
| | - Yuko Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Masaki Fukata
- Division of Membrane Physiology, Department of Molecular and Cellular Physiology, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan.,PRESTO, JST, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Cerebellar Shank2 Regulates Excitatory Synapse Density, Motor Coordination, and Specific Repetitive and Anxiety-Like Behaviors. J Neurosci 2017; 36:12129-12143. [PMID: 27903723 DOI: 10.1523/jneurosci.1849-16.2016] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 01/14/2023] Open
Abstract
Shank2 is a multidomain scaffolding protein implicated in the structural and functional coordination of multiprotein complexes at excitatory postsynaptic sites as well as in psychiatric disorders, including autism spectrum disorders. While Shank2 is strongly expressed in the cerebellum, whether Shank2 regulates cerebellar excitatory synapses, or contributes to the behavioral abnormalities observed in Shank2-/- mice, remains unexplored. Here we show that Shank2-/- mice show reduced excitatory synapse density in cerebellar Purkinje cells in association with reduced levels of excitatory postsynaptic proteins, including GluD2 and PSD-93, and impaired motor coordination in the Erasmus test. Shank2 deletion restricted to Purkinje cells (Pcp2-Cre;Shank2fl/fl mice) leads to similar reductions in excitatory synapse density, synaptic protein levels, and motor coordination. Pcp2-Cre;Shank2fl/fl mice do not recapitulate autistic-like behaviors observed in Shank2-/- mice, such as social interaction deficits, altered ultrasonic vocalizations, repetitive behaviors, and hyperactivity. However, Pcp2-Cre;Shank2fl/fl mice display enhanced repetitive behavior in the hole-board test and anxiety-like behavior in the light-dark test, which are not observed in Shank2-/- mice. These results implicate Shank2 in the regulation of cerebellar excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors. SIGNIFICANCE STATEMENT The postsynaptic side of excitatory synapses contains multiprotein complexes, termed the postsynaptic density, which contains receptors, scaffolding/adaptor proteins, and signaling molecules. Shank2 is an excitatory postsynaptic scaffolding protein implicated in the formation and functional coordination of the postsynaptic density and has been linked to autism spectrum disorders. Using Shank2-null mice and Shank2-conditional knock-out mice with a gene deletion restricted to cerebellar Purkinje cells, we explored functions of Shank2 in the cerebellum. We found that Shank2 regulates excitatory synapse density, motor coordination, and specific repetitive and anxiety-like behaviors, but is not associated with autistic-like social deficits or repetitive behaviors.
Collapse
|
28
|
Valbuena S, Lerma J. Non-canonical Signaling, the Hidden Life of Ligand-Gated Ion Channels. Neuron 2017; 92:316-329. [PMID: 27764665 DOI: 10.1016/j.neuron.2016.10.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/03/2016] [Accepted: 10/06/2016] [Indexed: 12/25/2022]
Abstract
Neurotransmitter receptors are responsible for the transfer of information across the synapse. While ionotropic receptors form ion channels and mediate rapid membrane depolarization, so-called metabotropic receptors exert their action though slower, less direct intracellular signaling pathways. Glutamate, GABA, and acetylcholine can activate both ionotropic and metabotropic receptors, yet the distinction between these "canonical" signaling systems has become less clear since ionotropic receptors were proposed to also activate second messenger systems, defining a "non-canonical" signaling pathway. How these alternative pathways affect neuronal circuit activity is not well understood, and their influence could be more significant than previously anticipated. In this review, we examine the evidence available that supports the existence of parallel and unsuspected signaling pathways used by ionotropic neurotransmitter receptors.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550 San Juan de Alicante, Spain.
| |
Collapse
|
29
|
Shank Modulates Postsynaptic Wnt Signaling to Regulate Synaptic Development. J Neurosci 2017; 36:5820-32. [PMID: 27225771 DOI: 10.1523/jneurosci.4279-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/25/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Prosap/Shank scaffolding proteins regulate the formation, organization, and plasticity of excitatory synapses. Mutations in SHANK family genes are implicated in autism spectrum disorder and other neuropsychiatric conditions. However, the molecular mechanisms underlying Shank function are not fully understood, and no study to date has examined the consequences of complete loss of all Shank proteins in vivo Here we characterize the single Drosophila Prosap/Shank family homolog. Shank is enriched at the postsynaptic membrane of glutamatergic neuromuscular junctions and controls multiple parameters of synapse biology in a dose-dependent manner. Both loss and overexpression of Shank result in defects in synaptic bouton number and maturation. We find that Shank regulates a noncanonical Wnt signaling pathway in the postsynaptic cell by modulating the internalization of the Wnt receptor Fz2. This study identifies Shank as a key component of synaptic Wnt signaling, defining a novel mechanism for how Shank contributes to synapse maturation during neuronal development. SIGNIFICANCE STATEMENT Haploinsufficiency for SHANK3 is one of the most prevalent monogenic causes of autism spectrum disorder, making it imperative to understand how the Shank family regulates neurodevelopment and synapse function. We created the first animal model lacking all Shank proteins and used the Drosophila neuromuscular junction, a model glutamatergic synapse, to characterize the role of Shank at synapses. We identified a novel function of Shank in synapse maturation via regulation of Wnt signaling in the postsynaptic cell.
Collapse
|
30
|
Kwon D, Liew H. miRNA profile of neuroprotection mechanism of echinomycin in Parkinson’s disease. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 2017; 284:485-498. [PMID: 28002650 DOI: 10.1111/febs.13995] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
The intrinsically disordered regions of eukaryotic proteomes are enriched in short linear motifs (SLiMs), which are of crucial relevance for cellular signaling and protein regulation; many mediate interactions by providing binding sites for peptide-binding domains. The vast majority of SLiMs remain to be discovered highlighting the need for experimental methods for their large-scale identification. We present a novel proteomic peptide phage display (ProP-PD) library that displays peptides representing the disordered regions of the human proteome, allowing direct large-scale interrogation of most potential binding SLiMs in the proteome. The performance of the ProP-PD library was validated through selections against SLiM-binding bait domains with distinct folds and binding preferences. The vast majority of identified binding peptides contained sequences that matched the known SLiM-binding specificities of the bait proteins. For SHANK1 PDZ, we establish a novel consensus TxF motif for its non-C-terminal ligands. The binding peptides mostly represented novel target proteins, however, several previously validated protein-protein interactions (PPIs) were also discovered. We determined the affinities between the VHS domain of GGA1 and three identified ligands to 40-130 μm through isothermal titration calorimetry, and confirmed interactions through coimmunoprecipitation using full-length proteins. Taken together, we outline a general pipeline for the design and construction of ProP-PD libraries and the analysis of ProP-PD-derived, SLiM-based PPIs. We demonstrated the methods potential to identify low affinity motif-mediated interactions for modular domains with distinct binding preferences. The approach is a highly useful complement to the current toolbox of methods for PPI discovery.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | | | - Debbie Dong
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada.,Department of Molecular Genetics and Department of Computer Science, University of Toronto, Canada
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Sweden
| |
Collapse
|
32
|
Suryavanshi PS, Gupta SC, Yadav R, Kesherwani V, Liu J, Dravid SM. Glutamate Delta-1 Receptor Regulates Metabotropic Glutamate Receptor 5 Signaling in the Hippocampus. Mol Pharmacol 2016; 90:96-105. [PMID: 27231330 PMCID: PMC4959088 DOI: 10.1124/mol.116.104786] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate delta-1 (GluD1) and glutamate delta-2 receptors. We have previously shown that GluD1 knockout mice exhibit features of developmental delay, including impaired spine pruning and switch in the N-methyl-D-aspartate receptor subunit, which are relevant to autism and other neurodevelopmental disorders. Here, we identified a novel role of GluD1 in regulating metabotropic glutamate receptor 5 (mGlu5) signaling in the hippocampus. Immunohistochemical analysis demonstrated colocalization of mGlu5 with GluD1 punctas in the hippocampus. Additionally, GluD1 protein coimmunoprecipitated with mGlu5 in the hippocampal membrane fraction, as well as when overexpressed in human embryonic kidney 293 cells, demonstrating that GluD1 and mGlu5 may cooperate in a signaling complex. The interaction of mGlu5 with scaffold protein effector Homer, which regulates mechanistic target of rapamycin (mTOR) signaling, was abnormal both under basal conditions and in response to mGlu1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) in GluD1 knockout mice. The basal levels of phosphorylated mTOR and protein kinase B, the signaling proteins downstream of mGlu5 activation, were higher in GluD1 knockout mice, and no further increase was induced by DHPG. We also observed higher basal protein translation and an absence of DHPG-induced increase in GluD1 knockout mice. In accordance with a role of mGlu5-mediated mTOR signaling in synaptic plasticity, DHPG-induced internalization of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunits was impaired in the GluD1 knockout mice. These results demonstrate that GluD1 interacts with mGlu5, and loss of GluD1 impairs normal mGlu5 signaling potentially by dysregulating coupling to its effector. These studies identify a novel role of the enigmatic GluD1 subunit in hippocampal function.
Collapse
Affiliation(s)
| | - Subhash C Gupta
- Department of Pharmacology, Creighton University, Omaha, Nebraska
| | - Roopali Yadav
- Department of Pharmacology, Creighton University, Omaha, Nebraska
| | - Varun Kesherwani
- Department of Pharmacology, Creighton University, Omaha, Nebraska
| | - Jinxu Liu
- Department of Pharmacology, Creighton University, Omaha, Nebraska
| | | |
Collapse
|
33
|
Jarius S, Wildemann B. 'Medusa head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 2: Anti-PKC-gamma, anti-GluR-delta2, anti-Ca/ARHGAP26 and anti-VGCC. J Neuroinflammation 2015; 12:167. [PMID: 26377184 PMCID: PMC4574118 DOI: 10.1186/s12974-015-0357-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa head antibodies' due their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects, and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
34
|
Patel S, Roncaglia P, Lovering RC. Using Gene Ontology to describe the role of the neurexin-neuroligin-SHANK complex in human, mouse and rat and its relevance to autism. BMC Bioinformatics 2015; 16:186. [PMID: 26047810 PMCID: PMC4458007 DOI: 10.1186/s12859-015-0622-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/20/2015] [Indexed: 12/24/2022] Open
Abstract
Background People with an autistic spectrum disorder (ASD) display a variety of characteristic behavioral traits, including impaired social interaction, communication difficulties and repetitive behavior. This complex neurodevelopment disorder is known to be associated with a combination of genetic and environmental factors. Neurexins and neuroligins play a key role in synaptogenesis and neurexin-neuroligin adhesion is one of several processes that have been implicated in autism spectrum disorders. Results In this report we describe the manual annotation of a selection of gene products known to be associated with autism and/or the neurexin-neuroligin-SHANK complex and demonstrate how a focused annotation approach leads to the creation of more descriptive Gene Ontology (GO) terms, as well as an increase in both the number of gene product annotations and their granularity, thus improving the data available in the GO database. Conclusions The manual annotations we describe will impact on the functional analysis of a variety of future autism-relevant datasets. Comprehensive gene annotation is an essential aspect of genomic and proteomic studies, as the quality of gene annotations incorporated into statistical analysis tools affects the effective interpretation of data obtained through genome wide association studies, next generation sequencing, proteomic and transcriptomic datasets. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0622-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sejal Patel
- Institute of Medical Science, University of Toronto, Medical Sciences Building, 1 King's College Circle, Toronto, M5S 1A8, Canada. .,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, M5T 1R8, Canada. .,Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| | - Paola Roncaglia
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK. .,The Gene Ontology Consortium, .
| | - Ruth C Lovering
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK.
| |
Collapse
|
35
|
Yamagata A, Yoshida T, Sato Y, Goto-Ito S, Uemura T, Maeda A, Shiroshima T, Iwasawa-Okamoto S, Mori H, Mishina M, Fukai S. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation. Nat Commun 2015; 6:6926. [PMID: 25908590 PMCID: PMC4423211 DOI: 10.1038/ncomms7926] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 03/16/2015] [Indexed: 01/07/2023] Open
Abstract
Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as 'splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.
Collapse
Affiliation(s)
- Atsushi Yamagata
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Tomoyuki Yoshida
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,PRESTO, JST, Saitama 332-0012, Japan,
| | - Yusuke Sato
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Sakurako Goto-Ito
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Takeshi Uemura
- CREST, JST, Saitama 332-0012, Japan,Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Nagano 390-8621, Japan,Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano 390-8621, Japan
| | - Asami Maeda
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Tomoko Shiroshima
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,CREST, JST, Saitama 332-0012, Japan
| | - Shiho Iwasawa-Okamoto
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan,PRESTO, JST, Saitama 332-0012, Japan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Masayoshi Mishina
- Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan,Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shuya Fukai
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan,Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8501, Japan,CREST, JST, Saitama 332-0012, Japan,
| |
Collapse
|
36
|
Mansouri M, Kasugai Y, Fukazawa Y, Bertaso F, Raynaud F, Perroy J, Fagni L, Kaufmann WA, Watanabe M, Shigemoto R, Ferraguti F. Distinct subsynaptic localization of type 1 metabotropic glutamate receptors at glutamatergic and
GABA
ergic synapses in the rodent cerebellar cortex. Eur J Neurosci 2014; 41:157-67. [DOI: 10.1111/ejn.12779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/26/2014] [Accepted: 10/05/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Mahnaz Mansouri
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | - Yu Kasugai
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | - Yugo Fukazawa
- Division of Cerebral Structure National Institute for Physiological Sciences Okazaki Japan
| | - Federica Bertaso
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Fabrice Raynaud
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Julie Perroy
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Laurent Fagni
- CNRS UMR‐5203 Institut de Génomique Fonctionnelle Montpellier France
- INSERM U661 Montpellier France
- Universités de Montpellier 1 & 2 UMR‐5203 Montpellier France
| | - Walter A. Kaufmann
- Department of Pharmacology Innsbruck Medical University Innsbruck Austria
| | | | - Ryuichi Shigemoto
- Division of Cerebral Structure National Institute for Physiological Sciences Okazaki Japan
| | | |
Collapse
|
37
|
Hirano K, Kinoshita T, Uemura T, Motohashi H, Watanabe Y, Ebihara T, Nishiyama H, Sato M, Suga M, Maruyama Y, Tsuji NM, Yamamoto M, Nishihara S, Sato C. Electron microscopy of primary cell cultures in solution and correlative optical microscopy using ASEM. Ultramicroscopy 2014; 143:52-66. [DOI: 10.1016/j.ultramic.2013.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
38
|
Krivochenitser R, Lemma Y, Wynn B, Jones JS. Ophthalmic presentation in the emergency department: a case report of a girl with "shimmering eyes". J Emerg Med 2014; 46:e163-5. [PMID: 24698510 DOI: 10.1016/j.jemermed.2014.01.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 11/04/2013] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Ophthalmic complaints are commonplace in the emergency department (ED) and are often initial presentations of a systemic illness. We present a 2-year-old girl presenting to the ED with ataxia and "shimmering" eyes. CASE REPORT The patient was diagnosed with opsoclonus-myoclonus syndrome (OMS) involving involuntary, multi-vectorial (mostly horizontal), conjugate fast eye movements without intersaccadic intervals. The ophthalmic presentation led to a paraneoplastic work-up, which revealed an abdominal mass measuring 5.3 × 3.3 × 4.3 cm, suggestive of neuroblastoma. The patient's opsoclonus improved after a 5-day course of dexamethasone and intravenous immunoglobulin. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: This case illustrates the importance of recognizing pathognomonic ophthalmic complaints in the ED. We present an overview of classic ophthalmic presentations associated with systemic illnesses.
Collapse
Affiliation(s)
| | - Yonatan Lemma
- Michigan State University Program in Emergency Medicine, Spectrum Health Hospital-Butterworth Campus, Grand Rapids, Michigan
| | - Barbara Wynn
- Michigan State University Program in Emergency Medicine, Spectrum Health Hospital-Butterworth Campus, Grand Rapids, Michigan
| | - Jeffrey S Jones
- Michigan State University Program in Emergency Medicine, Spectrum Health Hospital-Butterworth Campus, Grand Rapids, Michigan
| |
Collapse
|
39
|
The synaptic targeting of mGluR1 by its carboxyl-terminal domain is crucial for cerebellar function. J Neurosci 2014; 34:2702-12. [PMID: 24523559 DOI: 10.1523/jneurosci.3542-13.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The metabotropic glutamate receptor subtype 1 (mGluR1, Grm1) in cerebellar Purkinje cells (PCs) is essential for motor coordination and motor learning. At the synaptic level, mGluR1 has a critical role in long-term synaptic depression (LTD) at parallel fiber (PF)-PC synapses, and in developmental elimination of climbing fiber (CF)-PC synapses. mGluR1a, a predominant splice variant in PCs, has a long carboxyl (C)-terminal domain that interacts with Homer scaffolding proteins. Cerebellar roles of the C-terminal domain at both synaptic and behavior levels remain poorly understood. To address this question, we introduced a short variant, mGluR1b, which lacks this domain into PCs of mGluR1-knock-out (KO) mice (mGluR1b-rescue mice). In mGluR1b-rescue mice, mGluR1b showed dispersed perisynaptic distribution in PC spines. Importantly, mGluR1b-rescue mice exhibited impairments in inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca(2+) release, CF synapse elimination, LTD induction, and delay eyeblink conditioning: they showed normal transient receptor potential canonical (TRPC) currents and normal motor coordination. In contrast, PC-specific rescue of mGluR1a restored all cerebellar defects of mGluR1-KO mice. We conclude that the long C-terminal domain of mGluR1a is required for the proper perisynaptic targeting of mGluR1, IP3R-mediated Ca(2+) release, CF synapse elimination, LTD, and motor learning, but not for TRPC currents and motor coordination.
Collapse
|
40
|
The role of Cbln1 on Purkinje cell synapse formation. Neurosci Res 2014; 83:64-8. [PMID: 24607546 DOI: 10.1016/j.neures.2014.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 11/22/2022]
Abstract
Cbln1 is a glycoprotein which belongs to the C1q family. In the cerebellum, Cbln1 is produced and secreted from granule cells and works as a strong synapse organizer between Purkinje cells and parallel fibers, the axons of the granule cells. In this update article, we will describe the molecular mechanisms by which Cbln1 induces synapse formation and will review our findings on the axonal structural changes which occur specifically during this process. We will also describe our recent finding that Cbln1 has a suppressive role in inhibitory synapse formation between Purkinje cells and molecular layer interneurons. Our results have revealed that Cbln1 plays an essential role to establish parallel fiber-Purkinje cell synapses and to regulate balance between excitatory and inhibitory input on Purkinje cells.
Collapse
|
41
|
Abstract
Shank family proteins (Shank1, Shank2, and Shank3) are synaptic scaffolding proteins that organize an extensive protein complex at the postsynaptic density (PSD) of excitatory glutamatergic synapses. Recent human genetic studies indicate that SHANK family genes (SHANK1, SHANK2, and SHANK3) are causative genes for idiopathic autism spectrum disorders (ASD). Neurobiological studies of Shank mutations in mice support a general hypothesis of synaptic dysfunction in the pathophysiology of ASD. However, the molecular diversity of SHANK family gene products, as well as the heterogeneity in human and mouse phenotypes, pose challenges to modeling human SHANK mutations. Here, we review the molecular genetics of SHANK mutations in human ASD and discuss recent findings where such mutations have been modeled in mice. Conserved features of synaptic dysfunction and corresponding behaviors in Shank mouse mutants may help dissect the pathophysiology of ASD, but also highlight divergent phenotypes that arise from different mutations in the same gene.
Collapse
Affiliation(s)
- Yong-hui Jiang
- Departments of Pediatrics and Neurobiology, Duke University School of Medicine, Durham NC 27710, USA
| | - Michael D. Ehlers
- Pfizer Worldwide Research and Development, Neuroscience Research Unit, Cambridge, MA 02129, USA
| |
Collapse
|
42
|
Ito-Ishida A, Miyazaki T, Miura E, Matsuda K, Watanabe M, Yuzaki M, Okabe S. Presynaptically released Cbln1 induces dynamic axonal structural changes by interacting with GluD2 during cerebellar synapse formation. Neuron 2013; 76:549-64. [PMID: 23141067 DOI: 10.1016/j.neuron.2012.07.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2012] [Indexed: 01/08/2023]
Abstract
Differentiation of pre- and postsynaptic sites is coordinated by reciprocal interaction across synaptic clefts. At parallel fiber (PF)-Purkinje cell (PC) synapses, dendritic spines are autonomously formed without PF influence. However, little is known about how presynaptic structural changes are induced and how they lead to differentiation of mature synapses. Here, we show that Cbln1 released from PFs induces dynamic structural changes in PFs by a mechanism that depends on postsynaptic glutamate receptor delta2 (GluD2) and presynaptic neurexin (Nrx). Time-lapse imaging in organotypic culture and ultrastructural analyses in vivo revealed that Nrx-Cbln1-GluD2 signaling induces PF protrusions that often formed circular structures and encapsulated PC spines. Such structural changes in PFs were associated with the accumulation of synaptic vesicles and GluD2, leading to formation of mature synapses. Thus, PF protrusions triggered by Nrx-Cbln1-GluD2 signaling may promote bidirectional maturation of PF-PC synapses by a positive feedback mechanism.
Collapse
Affiliation(s)
- Aya Ito-Ishida
- Department of Cellular Neurobiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Glutamate receptor δ2 associates with metabotropic glutamate receptor 1 (mGluR1), protein kinase Cγ, and canonical transient receptor potential 3 and regulates mGluR1-mediated synaptic transmission in cerebellar Purkinje neurons. J Neurosci 2013; 32:15296-308. [PMID: 23115168 DOI: 10.1523/jneurosci.0705-12.2012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebellar motor coordination and cerebellar Purkinje cell synaptic function require metabotropic glutamate receptor 1 (mGluR1, Grm1). We used an unbiased proteomic approach to identify protein partners for mGluR1 in cerebellum and discovered glutamate receptor δ2 (GluRδ2, Grid2, GluΔ2) and protein kinase Cγ (PKCγ) as major interactors. We also found canonical transient receptor potential 3 (TRPC3), which is also needed for mGluR1-dependent slow EPSCs and motor coordination and associates with mGluR1, GluRδ2, and PKCγ. Mutation of GluRδ2 changes subcellular fractionation of mGluR1 and TRPC3 to increase their surface expression. Fitting with this, mGluR1-evoked inward currents are increased in GluRδ2 mutant mice. Moreover, loss of GluRδ2 disrupts the time course of mGluR1-dependent synaptic transmission at parallel fiber-Purkinje cells synapses. Thus, GluRδ2 is part of the mGluR1 signaling complex needed for cerebellar synaptic function and motor coordination, explaining the shared cerebellar motor phenotype that manifests in mutants of the mGluR1 and GluRδ2 signaling pathways.
Collapse
|
44
|
Isope P, Hildebrand ME, Snutch TP. Contributions of T-type voltage-gated calcium channels to postsynaptic calcium signaling within Purkinje neurons. THE CEREBELLUM 2012; 11:651-65. [PMID: 20734177 PMCID: PMC3411289 DOI: 10.1007/s12311-010-0195-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Low threshold voltage-gated T-type calcium channels have long been implicated in the electrical excitability and calcium signaling of cerebellar Purkinje neurons although the molecular composition, localization, and modulation of T-type channels within Purkinje cells have only recently been addressed. The specific functional roles that T-type channels play in local synaptic integration within Purkinje spines are also currently being unraveled. Overall, Purkinje neurons represent a powerful model system to explore the potential roles of postsynaptic T-type channels throughout the nervous system. In this review, we present an overview of T-type calcium channel biophysical, pharmacological, and physiological characteristics that provides a foundation for understanding T-type channels within Purkinje neurons. We also describe the biophysical properties of T-type channels in context of other voltage-gated calcium channel currents found within Purkinje cells. The data thus far suggest that one specific T-type isoform, Cav3.1, is highly expressed within Purkinje spines and both physically and functionally couples to mGluR1 and other effectors within putative signaling microdomains. Finally, we discuss how the selective potentiation of Cav3.1 channels via activation of mGluR1 by parallel fiber inputs affects local synaptic integration and how this interaction may relate to the overall excitability of Purkinje neuron dendrites.
Collapse
Affiliation(s)
- Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, Strasbourg, France.
| | | | | |
Collapse
|
45
|
Glutamate-receptor-like molecule GluRδ2 involved in synapse formation at parallel fiber-Purkinje neuron synapses. THE CEREBELLUM 2012; 11:71-7. [PMID: 20387025 DOI: 10.1007/s12311-010-0170-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glutamate-receptor-like molecule δ2 (GluRδ2, GluD2) has been classified as an ionotropic glutamate receptor subunit. It is selectively expressed on the postsynaptic membrane at parallel fiber-Purkinje neuron synapses in the cerebellum. Mutant mice deficient in GluRδ2 show impaired synaptic plasticity, the decrease in the number of parallel fiber-Purkinje neuron synapses, multiple innervation of climbing fibers on a Purkinje neuron, and defects in motor control and learning. Thus, GluRδ2 plays crucial roles in the cerebellar function. Recent studies on GluRδ2 have shown that it has synaptogenic activity. GluRδ2 expressed in a non-neuronal cell induces presynaptic differentiation of granule neurons in a co-culture preparation. This synaptogenic activity depends on an extracellular N-terminal leucine/isoleucine/valine binding protein-like domain of GluRδ2. GluRδ2 plays critical roles in formation, maturation, and/or maintenance of granule neuron-Purkinje neuron synapses.
Collapse
|
46
|
Mishina M, Uemura T, Yasumura M, Yoshida T. Molecular mechanism of parallel fiber-Purkinje cell synapse formation. Front Neural Circuits 2012. [PMID: 23189042 PMCID: PMC3505014 DOI: 10.3389/fncir.2012.00090] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The cerebellum receives two excitatory afferents, the climbing fiber (CF) and the mossy fiber-parallel fiber (PF) pathway, both converging onto Purkinje cells (PCs) that are the sole neurons sending outputs from the cerebellar cortex. Glutamate receptor δ2 (GluRδ2) is expressed selectively in cerebellar PCs and localized exclusively at the PF-PC synapses. We found that a significant number of PC spines lack synaptic contacts with PF terminals and some of residual PF-PC synapses show mismatching between pre- and postsynaptic specializations in conventional and conditional GluRδ2 knockout mice. Studies with mutant mice revealed that in addition to PF-PC synapse formation, GluRδ2 is essential for synaptic plasticity, motor learning, and the restriction of CF territory. GluRδ2 regulates synapse formation through the amino-terminal domain, while the control of synaptic plasticity, motor learning, and CF territory is mediated through the carboxyl-terminal domain. Thus, GluRδ2 is the molecule that bridges synapse formation and motor learning. We found that the trans-synaptic interaction of postsynaptic GluRδ2 and presynaptic neurexins (NRXNs) through cerebellin 1 (Cbln1) mediates PF-PC synapse formation. The synaptogenic triad is composed of one molecule of tetrameric GluRδ2, two molecules of hexameric Cbln1 and four molecules of monomeric NRXN. Thus, GluRδ2 triggers synapse formation by clustering four NRXNs. These findings provide a molecular insight into the mechanism of synapse formation in the brain.
Collapse
Affiliation(s)
- Masayoshi Mishina
- Brain Science Laboratory, The Research Organization of Science and Technology, Ritsumeikan University Shiga, Japan ; Molecular Neurobiology and Pharmacology, Graduate School of Medicine, The University of Tokyo Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Jen JC, Lopez I, Baloh RW. Opsoclonus: Clinical and immunological features. J Neurol Sci 2012; 320:61-5. [DOI: 10.1016/j.jns.2012.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 11/26/2022]
|
48
|
Abstract
Elucidation of molecular mechanisms of synapse formation is a prerequisite for the understanding of neural wiring, higher brain functions, and mental disorders. The trans-synaptic interaction of postsynaptic glutamate receptor δ2 (GluRδ2) and presynaptic neurexins (NRXNs) through cerebellin precursor protein 1 (Cbln1) mediates synapse formation in vivo in the cerebellum. Here, we asked how the trans-synaptic triad induces synapse formation. Native GluRδ2 existed as a tetramer in the membrane, whereas the N-terminal domain (NTD) of GluRδ2 formed a stable homodimer. When incubated with cultured mouse cerebellar granule cells (GCs), dimeric GluRδ2-NTD and Cbln1 exerted little effect on the accumulation of punctate immunostaining signals for Bassoon and vesicular glutamate transporter 1 in GC axons. However, tetramerized GluRδ2-NTD stimulated the accumulation of these presynaptic proteins in the axons. Analysis of Cbln1 mutants suggested that the binding sites of GluRδ2 and NRXN1β on Cbln1 are differential. Furthermore, there was no competition in the binding to Cbln1 between GluRδ2-NTD and the extracellular domain (ECD) of NRXN1β. Thus, GluRδ2 and Cbln1 interacted with each other rather independently of Cbln1-NRXN1β interaction and vice versa. Gel filtration and isothermal titration calorimetry analyses consistently showed that dimeric GluRδ2-NTD and hexameric Cbln1 assembled in the 1:1 ratio, whereas hexameric Cbln1 and the laminin-neurexin-sex hormone-binding globulin domain of NRXN1β-ECD assembled in the 1:2 ratio. Thus, the synaptogenic triad is assembled from tetrameric GluRδ2, hexameric Cbln1, and monomeric NRXN in the ratio of 1:2:4. These results suggest that GluRδ2 triggers synapse formation by clustering four NRXNs through triad formation.
Collapse
|
49
|
Ivarsson Y. Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett 2012; 586:2638-47. [PMID: 22576124 PMCID: PMC7094393 DOI: 10.1016/j.febslet.2012.04.015] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 11/19/2022]
Abstract
The PDZ domain is a protein-protein interacting module that plays an important role in the organization of signaling complexes. The recognition of short intrinsically disordered C-terminal peptide motifs is the archetypical PDZ function, but the functional repertoire of this versatile module also includes recognition of internal peptide sequences, dimerization and phospholipid binding. The PDZ function can be tuned by various means such as allosteric effects, changes of physiological buffer conditions and phosphorylation of PDZ domains and/or ligands, which poses PDZ domains as dynamic regulators of cell signaling. This review is focused on the plasticity of the PDZ interactions.
Collapse
Affiliation(s)
- Ylva Ivarsson
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule. J Neurosci 2012; 32:2588-600. [PMID: 22357843 DOI: 10.1523/jneurosci.4637-11.2012] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.
Collapse
|