1
|
Johnson K, Doucette A, Edwards A, Verdi A, McFarland R, Hulke S, Fowler A, Watts VJ, Klein AH. Reduced activity of adenylyl cyclase 1 attenuates morphine induced hyperalgesia and inflammatory pain in mice. Front Pharmacol 2022; 13:937741. [PMID: 36120355 PMCID: PMC9479488 DOI: 10.3389/fphar.2022.937741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Opioid tolerance, opioid-induced hyperalgesia during repeated opioid administration, and chronic pain are associated with upregulation of adenylyl cyclase activity. The objective of this study was to test the hypothesis that a reduction in adenylyl cyclase 1 (AC1) activity or expression would attenuate morphine tolerance and hypersensitivity, and inflammatory pain using murine models. To investigate opioid tolerance and opioid-induced hyperalgesia, mice were subjected to twice daily treatments of saline or morphine using either a static (15 mg/kg, 5 days) or an escalating tolerance paradigm (10–40 mg/kg, 4 days). Systemic treatment with an AC1 inhibitor, ST03437 (2.5–10 mg/kg, IP), reduced morphine-induced hyperalgesia in mice. Lumbar intrathecal administration of a viral vector incorporating a short-hairpin RNA targeting Adcy1 reduced morphine-induced hypersensitivity compared to control mice. In contrast, acute morphine antinociception, along with thermal paw withdrawal latencies, motor performance, exploration in an open field test, and burrowing behaviors were not affected by intrathecal Adcy1 knockdown. Knockdown of Adcy1 by intrathecal injection also decreased inflammatory mechanical hyperalgesia and increased burrowing and nesting activity after intraplantar administration of Complete Freund’s Adjuvant (CFA) one-week post-injection.
Collapse
Affiliation(s)
- Kayla Johnson
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Doucette
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Alexis Edwards
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Aleeya Verdi
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Ryan McFarland
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Shelby Hulke
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Amanda Fowler
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, United States
| | - Amanda H. Klein
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, United States
- *Correspondence: Amanda H. Klein,
| |
Collapse
|
2
|
Giacoletti G, Price T, Hoelz LVB, Shremo Msdi A, Cossin S, Vazquez-Falto K, Amorim Fernandes TV, Santos de Pontes V, Wang H, Boechat N, Nornoo A, Brust TF. A Selective Adenylyl Cyclase 1 Inhibitor Relieves Pain Without Causing Tolerance. Front Pharmacol 2022; 13:935588. [PMID: 35899113 PMCID: PMC9310748 DOI: 10.3389/fphar.2022.935588] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Among the ten different adenylyl cyclase isoforms, studies with knockout animals indicate that inhibition of AC1 can relieve pain and reduce behaviors linked to opioid dependence. We previously identified ST034307 as a selective inhibitor of AC1. The development of an AC1-selective inhibitor now provides the opportunity to further study the therapeutic potential of inhibiting this protein in pre-clinical animal models of pain and related adverse reactions. In the present study we have shown that ST034307 relives pain in mouse models of formalin-induced inflammatory pain, acid-induced visceral pain, and acid-depressed nesting. In addition, ST034307 did not cause analgesic tolerance after chronic dosing. We were unable to detect ST034307 in mouse brain following subcutaneous injections but showed a significant reduction in cAMP concentration in dorsal root ganglia of the animals. Considering the unprecedented selectivity of ST034307, we also report the predicted molecular interaction between ST034307 and AC1. Our results indicate that AC1 inhibitors represent a promising new class of analgesic agents that treat pain and do not result in tolerance or cause disruption of normal behavior in mice. In addition, we outline a unique binding site for ST034307 at the interface of the enzyme's catalytic domain.
Collapse
Affiliation(s)
- Gianna Giacoletti
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Lucas V. B. Hoelz
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Abdulwhab Shremo Msdi
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Samantha Cossin
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Katerina Vazquez-Falto
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tácio V. Amorim Fernandes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Metrologia, Qualidade e Tecnologia—INMETRO, Rio de Janeiro, Brazil
| | - Vinícius Santos de Pontes
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Hongbing Wang
- Department of Physiology, Michigan State University, East Lansing, MI, United States
| | - Nubia Boechat
- Laboratório de Síntese de Fármacos—LASFAR, Instituto de Tecnologia em Fármacos, Farmanguinhos—FIOCRUZ, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Adwoa Nornoo
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Tarsis F. Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| |
Collapse
|
3
|
Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei. Mar Genomics 2015. [DOI: 10.1016/j.margen.2015.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Nicol X, Gaspar P. Routes to cAMP: shaping neuronal connectivity with distinct adenylate cyclases. Eur J Neurosci 2014; 39:1742-51. [PMID: 24628976 DOI: 10.1111/ejn.12543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 01/22/2023]
Abstract
cAMP signaling affects a large number of the developmental processes needed for the construction of the CNS, including cell differentiation, axon outgrowth, response to guidance molecules or modulation of synaptic connections. This points to a key role of adenylate cyclases (ACs), the synthetic enzymes of cAMP, for neural development. ACs exist as 10 different isoforms, which are activated by distinct signaling pathways. The implication of specific AC isoforms in neural wiring was only recently demonstrated in mouse mutants, knockout (KO) for different AC isoforms, AC1, AC3, AC5, AC8 and soluble (s)AC/AC10. These studies stressed the importance of three of these isoforms, as sensors of neural activity that could modify the survival of neurons (sAC), axon outgrowth (sAC), or the response of axons to guidance molecules such as ephrins (AC1) or semaphorins (AC3). We summarize here the current knowledge on the role of these ACs for the development of sensory maps, in the somatosensory, visual and olfactory systems, which have been the most extensively studied. In these systems, AC1/AC3 KO revealed targeting mistakes due to the defective pruning and lack of discrimination of incoming axons to signals present in target structures. In contrast, no changes in cell differentiation, survival or axon outgrowth were noted in these mutants, suggesting a specificity of cAMP production routes for individual cellular processes within a given neuron. Further studies indicate that the subcellular localization of ACs could be key to their specific role in axon targeting and may explain their selective roles in neuronal wiring.
Collapse
Affiliation(s)
- Xavier Nicol
- Inserm UMR-S 968, Institut de la Vision, 75012, Paris, France; CNRS UMR 7210, 75012, Paris, France; Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
5
|
Lack of adenylate cyclase 1 (AC1): Consequences on corticospinal tract development and on locomotor recovery after spinal cord injury. Brain Res 2014; 1549:1-10. [DOI: 10.1016/j.brainres.2014.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 12/07/2013] [Accepted: 01/03/2014] [Indexed: 01/14/2023]
|
6
|
Kao TJ, Law C, Kania A. Eph and ephrin signaling: lessons learned from spinal motor neurons. Semin Cell Dev Biol 2011; 23:83-91. [PMID: 22040916 DOI: 10.1016/j.semcdb.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/17/2011] [Indexed: 12/23/2022]
Abstract
In nervous system assembly, Eph/ephrin signaling mediates many axon guidance events that shape the formation of precise neuronal connections. However, due to the complexity of interactions between Ephs and ephrins, the molecular logic of their action is still being unraveled. Considerable advances have been made by studying the innervation of the limb by spinal motor neurons, a series of events governed by Eph/ephrin signaling. Here, we discuss the contributions of different Eph/ephrin modes of interaction, downstream signaling and electrical activity, and how these systems may interact both with each other and with other guidance molecules in limb muscle innervation. This simple model system has emerged as a very powerful tool to study this set of molecules, and will continue to be so by virtue of its simplicity, accessibility and the wealth of pioneering cellular studies.
Collapse
Affiliation(s)
- Tzu-Jen Kao
- Institut de recherches cliniques de Montréal, Montréal, QC, H2W 1R7, Canada
| | | | | |
Collapse
|
7
|
Reed-Geaghan EG, Maricich SM. Peripheral somatosensation: a touch of genetics. Curr Opin Genet Dev 2011; 21:240-8. [PMID: 21277195 PMCID: PMC3097266 DOI: 10.1016/j.gde.2010.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 12/21/2010] [Indexed: 11/26/2022]
Abstract
The somatosensory system processes information that organisms 'feel': joint position, muscle stretch, pain, pressure, temperature, and touch. The system is composed of a diverse array of peripheral nerve endings specialized to detect these sensory modalities. Several recent discoveries have shed light on the genetic pathways that control specification and differentiation of these neurons, how they accurately innervate their central and peripheral targets, and the molecules that enable them to detect mechanical stimuli. Here, we review the cadre of genes that control these processes, focusing on mechanosensitive neurons and support cells of the skin that mediate different aspects of the sense of touch.
Collapse
Affiliation(s)
- Erin G. Reed-Geaghan
- Department of Pediatrics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106
| | - Stephen M. Maricich
- Department of Pediatrics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106
- Department of Neurosciences, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106
- Department of Otolaryngology, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106
| |
Collapse
|