1
|
Zhu M, Hu W, Lin L, Yang Q, Zhang L, Xu J, Xu Y, Liu J, Zhang M, Tong X, Zhu K, Feng K, Feng Y, Su J, Huang X, Li J. Single-cell RNA sequencing reveals new subtypes of lens superficial tissue in humans. Cell Prolif 2023; 56:e13477. [PMID: 37057399 PMCID: PMC10623935 DOI: 10.1111/cpr.13477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/15/2023] Open
Abstract
Although the cell atlas of the human ocular anterior segment of the human eye was revealed by single-nucleus RNA sequencing, whether subtypes of lens stem/progenitor cells exist among epithelial cells and the molecular characteristics of cell differentiation of the human lens remain unclear. Single-cell RNA sequencing is a powerful tool to analyse the heterogeneity of tissues at the single cell level, leading to a better understanding of the processes of cell differentiation. By profiling 18,596 cells in human lens superficial tissue through single-cell sequencing, we identified two subtypes of lens epithelial cells that specifically expressed C8orf4 and ADAMTSL4 with distinct spatial localization, a new type of fibre cells located directly adjacent to the epithelium, and a subpopulation of ADAMTSL4+ cells that might be lens epithelial stem/progenitor cells. We also found two trajectories of lens epithelial cell differentiation and changes of some important genes during differentiation.
Collapse
Affiliation(s)
- Meng‐Chao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Wei Hu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative MedicineFudan UniversityShanghaiChina
| | - Lei Lin
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Qing‐Wen Yang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Lu Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Jia‐Lin Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Yi‐Tong Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Jia‐Sheng Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Meng‐Di Zhang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Xiao‐Yu Tong
- Zhejiang Provincial Clinical Research Center for Pediatric DiseaseThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Kai‐Yi Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Ke Feng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Yi Feng
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, State Key Laboratory of Medical Neurobiology, Institute of Acupuncture and Moxibustion, Fudan Institutes of Integrative MedicineFudan UniversityShanghaiChina
| | - Jian‐Zhong Su
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| | - Xiu‐Feng Huang
- Zhejiang Provincial Clinical Research Center for Pediatric DiseaseThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Jin Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye HospitalWenzhou Medical UniversityWenzhouChina
- National Clinical Research Center for Ocular Diseases, Eye HospitalWenzhou Medical UniversityWenzhouChina
| |
Collapse
|
2
|
Quinn PM, Wijnholds J. Retinogenesis of the Human Fetal Retina: An Apical Polarity Perspective. Genes (Basel) 2019; 10:E987. [PMID: 31795518 PMCID: PMC6947654 DOI: 10.3390/genes10120987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
The Crumbs complex has prominent roles in the control of apical cell polarity, in the coupling of cell density sensing to downstream cell signaling pathways, and in regulating junctional structures and cell adhesion. The Crumbs complex acts as a conductor orchestrating multiple downstream signaling pathways in epithelial and neuronal tissue development. These pathways lead to the regulation of cell size, cell fate, cell self-renewal, proliferation, differentiation, migration, mitosis, and apoptosis. In retinogenesis, these are all pivotal processes with important roles for the Crumbs complex to maintain proper spatiotemporal cell processes. Loss of Crumbs function in the retina results in loss of the stratified appearance resulting in retinal degeneration and loss of visual function. In this review, we begin by discussing the physiology of vision. We continue by outlining the processes of retinogenesis and how well this is recapitulated between the human fetal retina and human embryonic stem cell (ESC) or induced pluripotent stem cell (iPSC)-derived retinal organoids. Additionally, we discuss the functionality of in utero and preterm human fetal retina and the current level of functionality as detected in human stem cell-derived organoids. We discuss the roles of apical-basal cell polarity in retinogenesis with a focus on Leber congenital amaurosis which leads to blindness shortly after birth. Finally, we discuss Crumbs homolog (CRB)-based gene augmentation.
Collapse
Affiliation(s)
- Peter M.J. Quinn
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
3
|
Konishi S, Tanaka N, Mashimo T, Yamamoto T, Sakuma T, Kaneko T, Tanaka M, Izawa T, Yamate J, Kuwamura M. Pathological characteristics of Ccdc85c knockout rats: a rat model of genetic hydrocephalus. Exp Anim 2019; 69:26-33. [PMID: 31341137 PMCID: PMC7004802 DOI: 10.1538/expanim.19-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spontaneous hhy mice show hydrocephalus and subcortical heterotopia, and
a mutation in the Ccdc85c gene has been identified. To contribute to the
comparison of the role of Ccdc85c in different species, we established a
Ccdc85c KO rat and investigated its pathological phenotypes.
Ccdc85c KO rats were produced by genomic engineering using
transcription activator-like effector nuclease (TALEN). The KO rats had an approximately
350-bp deletion in Ccdc85c and lacked CCDC85C protein expression. The KO
rats showed non-obstructive hydrocephalus, subcortical heterotopia, and intracranial
hemorrhage. The KO rats had many pathological characteristics similar to those in
hhy mice. These results indicate that CCDC85C plays an important role
in cerebral development in rats, and the function of CCDC85C in the cerebrum are similar
in rats and mice.
Collapse
Affiliation(s)
- Shizuka Konishi
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Natsuki Tanaka
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takashi Yamamoto
- Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Molecular Genetics Laboratory, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takehito Kaneko
- Laboratory of Animal Reproduction and Development, Graduate School of Arts and Science, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Miyuu Tanaka
- Veterinary Medical Center, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University, 1-58 Rinku Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
4
|
Alldredge A, Fuhrmann S. Loss of Axin2 Causes Ocular Defects During Mouse Eye Development. Invest Ophthalmol Vis Sci 2017; 57:5253-5262. [PMID: 27701636 PMCID: PMC5054732 DOI: 10.1167/iovs.15-18599] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The scaffold protein Axin2 is an antagonist and universal target of the Wnt/β-catenin pathway. Disruption of Axin2 may lead to developmental eye defects; however, this has not been examined. The purpose of this study was to investigate the role of Axin2 during ocular and extraocular development in mouse. Methods Animals heterozygous and homozygous for a Axin2lacZ knock-in allele were analyzed at different developmental stages for reporter expression, morphology as well as for the presence of ocular and extraocular markers using histologic and immunohistochemical techniques. Results During early eye development, the Axin2lacZ reporter was expressed in the periocular mesenchyme, RPE, and optic stalk. In the developing retina, Axin2lacZ reporter expression was initiated in ganglion cells at late embryonic stages and robustly expressed in subpopulations of amacrine and horizontal cells postnatally. Activation of the Axin2lacZ reporter overlapped with labeling of POU4F1, PAX6, and Calbindin. Germline deletion of Axin2 led to variable ocular phenotypes ranging from normal to severely defective eyes exhibiting microphthalmia, coloboma, lens defects, and expanded ciliary margin. These defects were correlated with abnormal tissue patterning in individual affected tissues, such as the optic fissure margins in the ventral optic cup and in the expanded ciliary margin. Conclusions Our results reveal a critical role for Axin2 during ocular development, likely by restricting the activity of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ashley Alldredge
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
5
|
Gao Z, Mao CA, Pan P, Mu X, Klein WH. Transcriptome of Atoh7 retinal progenitor cells identifies new Atoh7-dependent regulatory genes for retinal ganglion cell formation. Dev Neurobiol 2014; 74:1123-40. [PMID: 24799426 DOI: 10.1002/dneu.22188] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor ATOH7 (Math5) is essential for establishing retinal ganglion cell (RGC) fate. However, Atoh7-expressing retinal progenitor cells (RPCs) can give rise to all retinal cell types, suggesting that other factors are involved in specifying RGCs. The basis by which a subpopulation of Atoh7-expressing RPCs commits to an RGC fate remains uncertain but is of critical importance to retinal development since RGCs are the earliest cell type to differentiate. To better understand the regulatory mechanisms leading to cell-fate specification, a binary genetic system was generated to specifically label Atoh7-expressing cells with green fluorescent protein (GFP). Fluorescence-activated cell sorting (FACS)-purified GFP(+) and GFP(-) cells were profiled by RNA-seq. Here, we identify 1497 transcripts that were differentially expressed between the two RPC populations. Pathway analysis revealed diminished growth factor signaling in Atoh7-expressing RPCs, indicating that these cells had exited the cell cycle. In contrast, axon guidance signals were enriched, suggesting that axons of Atoh7-expressing RPCs were already making synaptic connections. Notably, many genes enriched in Atoh7-expressing RPCs encoded transcriptional regulators, and several were direct targets of ATOH7, including, and unexpectedly, Ebf3 and Eya2. We present evidence for a Pax6-Atoh7-Eya2 pathway that acts downstream of Atoh7 but upstream of differentiation factor Pou4f2. EYA2 is a protein phosphatase involved in protein-protein interactions and posttranslational regulation. These properties, along with Eya2 as an early target gene of ATOH7, suggest that EYA2 functions in RGC specification. Our results expand current knowledge of the regulatory networks operating in Atoh7-expressing RPCs and offer new directions for exploring the earliest aspects of retinogenesis.
Collapse
Affiliation(s)
- Zhiguang Gao
- Department of Biochemistry and Molecular Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, 77030
| | | | | | | | | |
Collapse
|
6
|
Alves CH, Pellissier LP, Wijnholds J. The CRB1 and adherens junction complex proteins in retinal development and maintenance. Prog Retin Eye Res 2014; 40:35-52. [PMID: 24508727 DOI: 10.1016/j.preteyeres.2014.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/30/2022]
Abstract
The early developing retinal neuroepithelium is composed of multipotent retinal progenitor cells that differentiate in a time specific manner, giving rise to six major types of neuronal and one type of glial cells. These cells migrate and organize in three distinct nuclear layers divided by two plexiform layers. Apical and adherens junction complexes have a crucial role in this process by the establishment of polarity and adhesion. Changes in these complexes disturb the spatiotemporal aspects of retinogenesis, leading to retinal degeneration resulting in mild or severe impairment of retinal function and vision. In this review, we summarize the mouse models for the different members of the apical and adherens junction protein complexes and describe the main features of their retinal phenotypes. The knowledge acquired from the different mutant animals for these proteins corroborate their importance in retina development and maintenance of normal retinal structure and function. More recently, several studies have tried to unravel the connection between the apical proteins, important cellular signaling pathways and their relation in retina development. Still, the mechanisms by which these proteins function remain largely unknown. Here, we hypothesize how the mammalian apical CRB1 complex might control retinogenesis and prevents onset of Leber congenital amaurosis or retinitis pigmentosa.
Collapse
Affiliation(s)
- Celso Henrique Alves
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Lucie P Pellissier
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Jan Wijnholds
- Department of Neuromedical Genetics, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Shaham O, Menuchin Y, Farhy C, Ashery-Padan R. Pax6: a multi-level regulator of ocular development. Prog Retin Eye Res 2012; 31:351-76. [PMID: 22561546 DOI: 10.1016/j.preteyeres.2012.04.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 02/08/2023]
Abstract
Eye development has been a paradigm for the study of organogenesis, from the demonstration of lens induction through epithelial tissue morphogenesis, to neuronal specification and differentiation. The transcription factor Pax6 has been shown to play a key role in each of these processes. Pax6 is required for initiation of developmental pathways, patterning of epithelial tissues, activation of tissue-specific genes and interaction with other regulatory pathways. Herein we examine the data accumulated over the last few decades from extensive analyses of biochemical modules and genetic manipulation of the Pax6 gene. Specifically, we describe the regulation of Pax6's expression pattern, the protein's DNA-binding properties, and its specific roles and mechanisms of action at all stages of lens and retinal development. Pax6 functions at multiple levels to integrate extracellular information and execute cell-intrinsic differentiation programs that culminate in the specification and differentiation of a distinct ocular lineage.
Collapse
Affiliation(s)
- Ohad Shaham
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | | | | | | |
Collapse
|
8
|
The role of Zic family zinc finger transcription factors in the proliferation and differentiation of retinal progenitor cells. Biochem Biophys Res Commun 2011; 415:42-7. [PMID: 22024047 DOI: 10.1016/j.bbrc.2011.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 02/07/2023]
Abstract
Members of the Zic family of zinc finger transcription factors play critical roles in a variety of developmental processes. Using DNA microarray analysis, we found that Zics are strongly expressed in SSEA-1-positive early retinal progenitors in the peripheral region of the mouse retina. Reverse-transcription polymerase chain reaction using mRNA from the retina at various developmental stages showed that Zic1 and Zic2 are expressed in the embryonic retina and then gradually disappear during retinal development. Zic3 is also expressed in the embryonic retina; its expression level slightly decreases but it is expressed until adulthood. We overexpressed Zic1, Zic2, or Zic3 in retinal progenitors at embryonic day 17.5 and cultured the retina as explants for 2 weeks. The number of rod photoreceptors was fewer than in the control, but no other cell types showed significant differences between control and Zic overexpressing cells. The proliferation activity of normal retinal progenitors decreased after 5 days in culture, as observed in normal in vivo developmental processes. However, Zic expressing retinal cells continued to proliferate at days 5 and 7, suggesting that Zics sustain the proliferation activities of retinal progenitor cells. Since the effects of Zic1, 2, and 3 are indistinguishable in terms of differentiation and proliferation of retinal progenitors, the redundant function of Zics in retinal development is suggested.
Collapse
|