1
|
Malyarenko TV, Zakharenko VM, Kicha AA, Ponomarenko AI, Manzhulo IV, Kalinovsky AI, Popov RS, Dmitrenok PS, Ivanchina NV. New Polyhydroxysteroid Glycosides with Antioxidant Activity from the Far Eastern Sea Star Ceramaster patagonicus. Mar Drugs 2024; 22:508. [PMID: 39590788 PMCID: PMC11595467 DOI: 10.3390/md22110508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Four new glycosides of polyhydroxysteroids, ceramasterosides A, B, D, and E (1-4), and two previously known compounds, ceramasteroside C1 (5) and attenuatoside B-I (6), were isolated from an extract of a deep-sea sea star species, the orange cookie star Ceramaster patagonicus. The structures of 1-4 were elucidated by the extensive NMR and ESIMS methods. Steroid monoglycosides 1 and 2 had a common 3β,6α,8,15β,16β-pentahydroxysteroid nucleus and a C-29 oxidized stigmastane side chain and differed from each other only in monosaccharide residues. Ceramasteroside A (1) contained 3-O-methyl-4-O-sulfated β-D-xylopyranose, while ceramasteroside B (2) had 3-O-methyl-4-O-sulfated β-D-glucopyranose, recorded from starfish-derived steroid glycosides for the first time. Their biological activity was studied using a model of lipopolysaccharide-induced (LPS) inflammation in a SIM-A9 murine microglial cell line. During the LPS-induced activation of microglial cells, 1, 3, and 5, at a non-toxic concentration of 1 µM, showed the highest efficiency in reducing the production of intracellular NO, while 4 proved to be most efficient in reducing the extracellular nitrite production. All the test compounds reduced the LPS-induced malondialdehyde (MDA) production. The in vitro experiments have demonstrated, for the first time, the antioxidant activity of the compounds under study.
Collapse
Affiliation(s)
- Timofey V. Malyarenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
- Department of Chemistry and Materials, Institute of High Technology and Advanced Materials, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Viktor M. Zakharenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
- Department of Chemistry and Materials, Institute of High Technology and Advanced Materials, Far Eastern Federal University, Russky Island, Ajax Bay, 10, 690922 Vladivostok, Russia
| | - Alla A. Kicha
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
| | - Arina I. Ponomarenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia; (A.I.P.); (I.V.M.)
| | - Igor V. Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, ul. Palchevskogo 17, 690041 Vladivostok, Russia; (A.I.P.); (I.V.M.)
| | - Anatoly I. Kalinovsky
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
| | - Natalia V. Ivanchina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-let Vladivostoku 159, 690022 Vladivostok, Russia; (V.M.Z.); (A.A.K.); (A.I.K.); (R.S.P.); (P.S.D.)
| |
Collapse
|
2
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
3
|
Tseng YT, Lai R, Oieni F, Standke A, Smyth G, Yang C, Chen M, St John J, Ekberg J. Liraglutide modulates adhesion molecules and enhances cell properties in three-dimensional cultures of olfactory ensheathing cells. Biomed Pharmacother 2023; 165:115084. [PMID: 37399717 DOI: 10.1016/j.biopha.2023.115084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Cell transplantation using olfactory ensheathing cells (OECs) is a promising approach for nerve repair but there are numerous limitations with their delivery method. Three-dimensional (3D) cell culture systems potentially offer a powerful approach for cell production and delivery options. To further optimise the use of OECs, strategies to promote cell viability and maintain cell behaviours in 3D cultures become important. We previously demonstrated an anti-diabetic drug, liraglutide, could modulate OEC migration and re-model extracellular matrix in two-dimensional (2D) cultures. In the present study, we further investigated its beneficial effects in our 3D culture system using primary OECs. OECs treated with liraglutide at 100 nM showed improved cell viability and had modulated expression of N-cadherin and β1-integrin (two important cell adhesion molecules). When formed into 3D spheroids, the pre-treated OECs generated spheroids with an increased volume and a decreased cell density compared to control spheroids. OECs that subsequently migrated out of the liraglutide pre-treated spheroids had higher capacity for migration with increased duration and length, which was attributed to a reduction in the pauses during the migration. Moreover, OECs that migrated out from liraglutide spheroids had a more bipolar morphology consistent with higher migratory capacity. In summary, liraglutide improved the viability of OECs, modulated cell adhesion molecules, and resulted in stable 3D cell constructs which conferred enhanced migratory capacity on the OECs. Overall, liraglutide may potentially improve the therapeutic use of OECs for neural repair by enhancing the generation of stable 3D constructs and increasing the migratory behaviour of OECs.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Andrea Standke
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Graham Smyth
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Chenying Yang
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Mo Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - James St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
4
|
Gilmour AD, Reshamwala R, Wright AA, Ekberg JAK, St John JA. Optimizing Olfactory Ensheathing Cell Transplantation for Spinal Cord Injury Repair. J Neurotrauma 2021; 37:817-829. [PMID: 32056492 DOI: 10.1089/neu.2019.6939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell transplantation constitutes an important avenue for development of new treatments for spinal cord injury (SCI). These therapies are aimed at supporting neural repair and/or replacing lost cells at the injury site. To date, various cell types have been trialed, with most studies focusing on different types of stem cells or glial cells. Here, we review commonly used cell transplantation approaches for spinal cord injury (SCI) repair, with focus on transplantation of olfactory ensheathing cells (OECs), the glial cells of the primary olfactory nervous system. OECs are promising candidates for promotion of neural repair given that they support continuous regeneration of the olfactory nerve that occurs throughout life. Further, OECs can be accessed from the nasal mucosa (olfactory neuroepithelium) at the roof of the nasal cavity and can be autologously transplanted. OEC transplantation has been trialed in many animal models of SCI, as well as in human clinical trials. While several studies have been promising, outcomes are variable and the method needs improvement to enhance aspects such as cell survival, integration, and migration. As a case study, we include the approaches used by our team (the Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia) to address the current problems with OEC transplantation and discuss how the therapeutic potential of OEC transplantation can be improved. Our approach includes discovery research to improve our knowledge of OEC biology, identifying natural and synthetic compounds to stimulate the neural repair properties of OECs, and designing three-dimensional cell constructs to create stable and transplantable cell structures.
Collapse
Affiliation(s)
- Aaron D Gilmour
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Ronak Reshamwala
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Alison A Wright
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Jenny A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - James A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research and Griffith University, Nathan, Queensland, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
5
|
Tseng YT, Chen M, Lai R, Oieni F, Smyth G, Anoopkumar-Dukie S, St John J, Ekberg J. Liraglutide modulates olfactory ensheathing cell migration with activation of ERK and alteration of the extracellular matrix. Biomed Pharmacother 2021; 141:111819. [PMID: 34126351 DOI: 10.1016/j.biopha.2021.111819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Transplantation of olfactory ensheathing cells (OECs) is a promising approach for repairing the injured nervous system that has been extensively trialed for nervous system repair. However, the method still needs improvement and optimization. One avenue of improving outcomes is to stimulate OEC migration into the injury site. Liraglutide is a glucagon-like peptide-1 receptor agonist used for management of diabetes and obesity. It has been shown to be neuroprotective and to promote cell migration, but whether it can stimulate glial cells remains unknown. In the current study, we investigated the effects of liraglutide on OEC migration and explored the involved mechanisms. We showed that liraglutide at low concentration (100 nM) overall promoted OEC migration over time. Liraglutide modulated the migratory behavior of OECs by reducing time in arrest, and promoted random rather than straight migration. Liraglutide also induced a morphological change of primary OECs towards a bipolar shape consistent with improved migration. We found that liraglutide activated extracellular signal-regulated kinase (ERK), which has key roles in cell migration; the timing of ERK activation correlated with stimulation of migration. Furthermore, liraglutide also modulated the extracellular matrix by upregulating laminin-1 and down-regulating collagen IV. In summary, we found that liraglutide can stimulate OEC migration and re-model the extracellular matrix to better promote cell migration, and possibly also to become more conducive for axonal regeneration. Thus, liraglutide may improve OEC transplantation outcomes.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Mo Chen
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Richard Lai
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Francesca Oieni
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | - Graham Smyth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia
| | | | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia; Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, QLD 4111, Australia; School of Pharmacy and Medical Sciences, Griffith University, Southport, QLD 4222, Australia; Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia.
| |
Collapse
|
6
|
Wang Z, Hui C. Contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids. Org Biomol Chem 2021; 19:3791-3812. [PMID: 33949606 DOI: 10.1039/d1ob00448d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many natural products have intriguing biological properties that arise from their fascinating chemical structures. However, the intrinsic complexity of the structural skeleton and the reactive functional groups on natural products pose tremendous challenges to chemical syntheses. Semi-synthesis uses chemical compounds isolated from natural sources as the starting materials to produce other novel compounds with distinct chemical and medicinal properties. In particular, advancements in various types of sp3 C-H bond functionalization reactions and skeletal rearrangement methods have contributed to the re-emergence of semi-synthesis as an efficient approach for the synthesis of structurally complex bioactive natural products. Here, we begin with a brief discussion of several bioactive natural products that were obtained via a semi-synthetic approach between 2008 and 2015 and we then discuss in-depth contemporary advancements in the semi-synthesis of bioactive terpenoids and steroids reported during 2016-2020.
Collapse
Affiliation(s)
- Zhuo Wang
- Southern University of Science and Technology, School of Medicine, Shenzhen, 518055, People's Republic of China.
| | - Chunngai Hui
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
7
|
Chen M, Vial ML, Gee L, Davis RA, St John JA, Ekberg JAK. The plant natural product 2-methoxy-1,4-naphthoquinone stimulates therapeutic neural repair properties of olfactory ensheathing cells. Sci Rep 2020; 10:951. [PMID: 31969642 PMCID: PMC6976649 DOI: 10.1038/s41598-020-57793-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/11/2019] [Indexed: 01/04/2023] Open
Abstract
Olfactory ensheathing cells (OECs) are crucial for promoting the regeneration of the primary olfactory nervous system that occurs throughout life. Transplantation of OECs has emerged as a promising therapy for nervous system injuries, in particular for spinal cord injury repair. Functional outcomes in both animals and humans are, however, highly variable, primarily because it is difficult to rapidly obtain enough OECs for transplantation. Compounds which can stimulate OEC proliferation without changing the phenotype of the cells are therefore highly sought after. Additionally, compounds which can stimulate favourable cell behaviours such as migration and phagocytic activity are desirable. We conducted a medium-throughput screen testing the Davis open access natural product-based library (472 compounds) and subsequently identified the known plant natural product 2-methoxy-1,4-naphthoquinone as a stimulant of OEC viability. We showed that 2-methoxy-1,4-naphthoquinone: (i) strongly stimulates proliferation over several weeks in culture whilst maintaining the OEC phenotype; (ii) stimulates the phagocytic activity of OECs, and (iii) modulates the cell cycle. We also identified the transcription factor Nrf2 as the compound’s potential molecular target. From these extensive investigations we conclude that 2-methoxy-1,4-naphthoquinone may enhance the therapeutic potential of OECs by stimulating proliferation prior to transplantation.
Collapse
Affiliation(s)
- M Chen
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - M L Vial
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - L Gee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - R A Davis
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - J A St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
| | - J A K Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, 4111, QLD, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia. .,Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|