1
|
Kichuk T, Avalos JL. Shape Matters: The Utility and Analysis of Altered Yeast Mitochondrial Morphology in Health, Disease, and Biotechnology. Int J Mol Sci 2025; 26:2152. [PMID: 40076772 PMCID: PMC11899761 DOI: 10.3390/ijms26052152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Mitochondria are involved in a wide array of critical cellular processes from energy production to cell death. The morphology (size and shape) of mitochondrial compartments is highly responsive to both intracellular and extracellular conditions, making these organelles highly dynamic. Nutrient levels and stressors both inside and outside the cell inform the balance of mitochondrial fission and fusion and the recycling of mitochondrial components known as mitophagy. The study of mitochondrial morphology and its implications in human disease and microbial engineering have gained significant attention over the past decade. The yeast Saccharomyces cerevisiae offers a valuable model system for studying mitochondria due to its ability to survive without respiring, its genetic tractability, and the high degree of mitochondrial similarity across eukaryotic species. Here, we review how the interplay between mitochondrial fission, fusion, biogenesis, and mitophagy regulates the dynamic nature of mitochondrial networks in both yeast and mammalian systems with an emphasis on yeast as a model organism. Additionally, we examine the crucial role of inter-organelle interactions, particularly between mitochondria and the endoplasmic reticulum, in regulating mitochondrial dynamics. The dysregulation of any of these processes gives rise to abnormal mitochondrial morphologies, which serve as the distinguishing features of numerous diseases, including Parkinson's disease, Alzheimer's disease, and cancer. Notably, yeast models have contributed to revealing the underlying mechanisms driving these human disease states. In addition to furthering our understanding of pathologic processes, aberrant yeast mitochondrial morphologies are of increasing interest to the seemingly distant field of metabolic engineering, following the discovery that compartmentalization of certain biosynthetic pathways within mitochondria can significantly improve chemical production. In this review, we examine the utility of yeast as a model organism to study mitochondrial morphology in both healthy and pathologic states, explore the nascent field of mitochondrial morphology engineering, and discuss the methods available for the quantification and classification of these key mitochondrial morphologies.
Collapse
Affiliation(s)
- Therese Kichuk
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - José L. Avalos
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA;
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
- The Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
2
|
Wezeman J, Darvas M, Postupna N, Klug J, Mangalindan RS, Keely A, Nguyen K, Johnson C, Rosenfeld M, Ladiges W. A drug cocktail of rapamycin, acarbose, and phenylbutyrate enhances resilience to features of early-stage Alzheimer's disease in aging mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577437. [PMID: 38352353 PMCID: PMC10862773 DOI: 10.1101/2024.01.26.577437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The process of aging is defined by the breakdown of critical maintenance pathways leading to an accumulation of damage and its associated phenotypes. Aging affects many systems and is considered the greatest risk factor for a number of diseases. Therefore, interventions aimed at establishing resilience to aging should delay or prevent the onset of age-related diseases. Recent studies have shown a three-drug cocktail consisting of rapamycin, acarbose, and phenylbutyrate delayed the onset of physical, cognitive, and biological aging phenotypes in old mice. To test the ability of this drug cocktail to impact Alzheimer's disease (AD), an adeno-associated-viral vector model of AD was created. Mice were fed the drug cocktail 2 months prior to injection and allowed 3 months for phenotypic development. Cognitive phenotypes were evaluated through a spatial navigation learning task. To quantify neuropathology, immunohistochemistry was performed for AD proteins and pathways of aging. Results suggested the drug cocktail was able to increase resilience to cognitive impairment, inflammation, and AD protein aggregation while enhancing autophagy and synaptic integrity, preferentially in female cohorts. In conclusion, female mice were more susceptible to the development of early stage AD neuropathology and learning impairment, and more responsive to treatment with the drug cocktail in comparison to male mice. Translationally, a model of AD where females are more susceptible would have greater value as women have a greater burden and incidence of disease compared to men. These findings validate past results and provide the rationale for further investigations into enhancing resilience to early-stage AD by enhancing resilience to aging.
Collapse
Affiliation(s)
- Jackson Wezeman
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA
| | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA
| | - Jenna Klug
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Ruby Sue Mangalindan
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Addison Keely
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Kathryn Nguyen
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Chloe Johnson
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Epremyan KK, Mamaev DV, Zvyagilskaya RA. Alzheimer's Disease: Significant Benefit from the Yeast-Based Models. Int J Mol Sci 2023; 24:9791. [PMID: 37372938 DOI: 10.3390/ijms24129791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related, multifaceted neurological disorder associated with accumulation of aggregated proteins (amyloid Aβ and hyperphosphorylated tau), loss of synapses and neurons, and alterations in microglia. AD was recognized by the World Health Organization as a global public health priority. The pursuit of a better understanding of AD forced researchers to pay attention to well-defined single-celled yeasts. Yeasts, despite obvious limitations in application to neuroscience, show high preservation of basic biological processes with all eukaryotic organisms and offer great advantages over other disease models due to the simplicity, high growth rates on low-cost substrates, relatively simple genetic manipulations, the large knowledge base and data collections, and availability of an unprecedented amount of genomic and proteomic toolboxes and high-throughput screening techniques, inaccessible to higher organisms. Research reviewed above clearly indicates that yeast models, together with other, more simple eukaryotic models including animal models, C. elegans and Drosophila, significantly contributed to understanding Aβ and tau biology. These models allowed high throughput screening of factors and drugs that interfere with Aβ oligomerization, aggregation and toxicity, and tau hyperphosphorylation. In the future, yeast models will remain relevant, with a focus on creating novel high throughput systems to facilitate the identification of the earliest AD biomarkers among different cellular networks in order to achieve the main goal-to develop new promising therapeutic strategies to treat or prevent the disease.
Collapse
Affiliation(s)
- Khoren K Epremyan
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Dmitry V Mamaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| | - Renata A Zvyagilskaya
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33/2, 119071 Moscow, Russia
| |
Collapse
|
4
|
Gao Y, Wang C, Jiang D, An G, Jin F, Zhang J, Han G, Cui C, Jiang P. New insights into the interplay between autophagy and oxidative and endoplasmic reticulum stress in neuronal cell death and survival. Front Cell Dev Biol 2022; 10:994037. [PMID: 36187470 PMCID: PMC9524158 DOI: 10.3389/fcell.2022.994037] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Autophagy is a dynamic process that maintains the normal homeostasis of cells by digesting and degrading aging proteins and damaged organelles. The effect of autophagy on neural tissue is still a matter of debate. Some authors suggest that autophagy has a protective effect on nerve cells, whereas others suggest that autophagy also induces the death of nerve cells and aggravates nerve injury. In mammals, oxidative stress, autophagy and endoplasmic reticulum stress (ERS) constitute important defense mechanisms to help cells adapt to and survive the stress conditions caused by physiological and pathological stimuli. Under many pathophysiological conditions, oxidative stress, autophagy and ERS are integrated and amplified in cells to promote the progress of diseases. Over the past few decades, oxidative stress, autophagy and ERS and their interactions have been a hot topic in biomedical research. In this review, we summarize recent advances in understanding the interactions between oxidative stress, autophagy and ERS in neuronal cell death and survival.
Collapse
Affiliation(s)
- Yahao Gao
- Clinical Medical School, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Di Jiang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Gang An
- Clinical Medical School, Jining Medical University, Jining, China
| | - Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Junchen Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Guangkui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
| | - Changmeng Cui
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| | - Pei Jiang
- Department of Clinical Pharmacy, Jining First People’s Hospital, Jining Medical University, Jining, China
- *Correspondence: Changmeng Cui, ; Pei Jiang,
| |
Collapse
|
5
|
Zhao L, Yue Z, Wang Y, Wang J, Ullah I, Muhammad F, Zhou Y, Zhu H, Wang X, Li H. Autophagy activation by Terminalia chebula Retz. reduce Aβ generation by shifting APP processing toward non-amyloidogenic pathway in APPswe transgenic SH-SY5Y cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154245. [PMID: 35696798 DOI: 10.1016/j.phymed.2022.154245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/18/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) is a central hallmark of AD. Accumulating evidence suggest that shifting amyloid precursor protein (APP) metabolism pathway to non-amyloidogenic ways and inducing autophagy play key roles in AD pathology. In published reports, there is no research on the APP metabolic process of Terminalia chebula Retz. (T. Chebula). PURPOSE The study aims to assess the effects of T. Chebula in AD transgenic SH-SY5Y cells to determine its underlying mechanisms on reducing Aβ level by regulating APP metabolic process. METHODS The effects of T. Chebula water extract (TWE) on APPswe transgenic SH-SY5Y cells were analyzed by cell viability. ELISA used to quantify extracellular Aβ1-40 and Aβ1-42 generations. Western blot and RT-PCR assays were chosen to detect the expression of proteins and genes. The acridine orange (AO) stain was used to label autophagic-vesicles. RESULTS Treatment with TWE significantly suppressed the Aβ1-40 and Aβ1-42 generations of APPswe transgenic cells. TWE inhibited amyloidogenic pathway by reducing BACE1 expression, and promote non-amyloidogenic pathway by inducing ADAM10 level of APP metabolism. Additionally, TWE induced autophagy in APPswe transgenic cells involved in APP metabolism to shift the balance to non-amyloidogenic pathway. CONCLUSION In summary, our finding first time expounded that TWE can inhibit the generation of Aβ1-40 and Aβ1-42 in APPswe transgenic SH-SY5Y cells, which were regulated APP metabolism tends to non-amyloid metabolism pathway and mediated by autophagy. The results presented a novel finding for AD treatment of traditional natural medicines.
Collapse
Affiliation(s)
- Longhe Zhao
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Zhaorong Yue
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Yanni Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Jiatao Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Inam Ullah
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Fahim Muhammad
- Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China
| | - Yongtao Zhou
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Hongmei Zhu
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China.
| | - Hongyu Li
- School of Pharmacy, Lanzhou University, Donggang Road No. 199, Lanzhou, China; Institute of Microbiology, School of Life Sciences, Lanzhou University, Tianshui Road No. 222, Lanzhou, China.
| |
Collapse
|
6
|
de la Cueva M, Antequera D, Ordoñez-Gutierrez L, Wandosell F, Camins A, Carro E, Bartolome F. Amyloid-β impairs mitochondrial dynamics and autophagy in Alzheimer's disease experimental models. Sci Rep 2022; 12:10092. [PMID: 35710783 PMCID: PMC9203760 DOI: 10.1038/s41598-022-13683-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
The most accepted hypothesis in Alzheimer's disease (AD) is the amyloid cascade which establishes that Aβ accumulation may induce the disease development. This accumulation may occur years before the clinical symptoms but it has not been elucidated if this accumulation is the cause or the consequence of AD. It is however, clear that Aβ accumulation exerts toxic effects in the cerebral cells. It is important then to investigate all possible associated events that may help to design new therapeutic strategies to defeat or ameliorate the symptoms in AD. Alterations in the mitochondrial physiology have been found in AD but it is not still clear if they could be an early event in the disease progression associated to amyloidosis or other conditions. Using APP/PS1 mice, our results support published evidence and show imbalances in the mitochondrial dynamics in the cerebral cortex and hippocampus of these mice representing very early events in the disease progression. We demonstrate in cellular models that these imbalances are consequence of Aβ accumulation that ultimately induce increased mitophagy, a mechanism which selectively removes damaged mitochondria by autophagy. Along with increased mitophagy, we also found that Aβ independently increases autophagy in APP/PS1 mice. Therefore, mitochondrial dysfunction could be an early feature in AD, associated with amyloid overload.
Collapse
Affiliation(s)
- Macarena de la Cueva
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Desiree Antequera
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain
| | - Lara Ordoñez-Gutierrez
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Francisco Wandosell
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Antonio Camins
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy & Food Sciences, University of Barcelona, Barcelona, Spain
- Institut de Neurociències (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Eva Carro
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| | - Fernando Bartolome
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041, Madrid, Spain.
| |
Collapse
|
7
|
Burillo J, Marqués P, Jiménez B, González-Blanco C, Benito M, Guillén C. Insulin Resistance and Diabetes Mellitus in Alzheimer's Disease. Cells 2021; 10:1236. [PMID: 34069890 PMCID: PMC8157600 DOI: 10.3390/cells10051236] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a progressive disease that is characterized by the appearance of insulin resistance. The term insulin resistance is very wide and could affect different proteins involved in insulin signaling, as well as other mechanisms. In this review, we have analyzed the main molecular mechanisms that could be involved in the connection between type 2 diabetes and neurodegeneration, in general, and more specifically with the appearance of Alzheimer's disease. We have studied, in more detail, the different processes involved, such as inflammation, endoplasmic reticulum stress, autophagy, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Jesús Burillo
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos González-Blanco
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, 28040 Madrid, Spain; (J.B.); (P.M.); (B.J.); (C.G.-B.); (M.B.)
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28040 Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), 28040 Madrid, Spain
| |
Collapse
|
8
|
Huang Z, Yan Q, Wang Y, Zou Q, Li J, Liu Z, Cai Z. Role of Mitochondrial Dysfunction in the Pathology of Amyloid-β. J Alzheimers Dis 2021; 78:505-514. [PMID: 33044180 DOI: 10.3233/jad-200519] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been widely reported in several neurodegenerative disorders, including in the brains of patients with Alzheimer's disease (AD), Parkinson's disease, and Huntington disease. An increasing number of studies have implicated altered glucose and energy metabolism in patients with AD. There is compelling evidence of abnormalities in some of the key mitochondrial enzymes involved in glucose metabolism, including the pyruvate dehydrogenase and α-ketoglutarate dehydrogenase complexes, which play a great significance role in the pathogenesis of AD. Changes in some of the enzyme activities of the mitochondria found in AD have been linked with the pathology of amyloid-β (Aβ). This review highlights the role of mitochondrial function in the production and clearance of Aβ and how the pathology of Aβ leads to a decrease in energy metabolism by affecting mitochondrial function.
Collapse
Affiliation(s)
- Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Qian Yan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Jing Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| | - Zhou Liu
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Zhanjiang, Guangdong, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, Chongqing, China
| |
Collapse
|
9
|
Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020; 21:E8014. [PMID: 33126501 PMCID: PMC7662794 DOI: 10.3390/ijms21218014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's Disease (AD) is a progressive multifactorial age-related neurodegenerative disorder that causes the majority of deaths due to dementia in the elderly. Although various risk factors have been found to be associated with AD progression, the cause of the disease is still unresolved. The loss of proteostasis is one of the major causes of AD: it is evident by aggregation of misfolded proteins, lipid homeostasis disruption, accumulation of autophagic vesicles, and oxidative damage during the disease progression. Different models have been developed to study AD, one of which is a yeast model. Yeasts are simple unicellular eukaryotic cells that have provided great insights into human cell biology. Various yeast models, including unmodified and genetically modified yeasts, have been established for studying AD and have provided significant amount of information on AD pathology and potential interventions. The conservation of various human biological processes, including signal transduction, energy metabolism, protein homeostasis, stress responses, oxidative phosphorylation, vesicle trafficking, apoptosis, endocytosis, and ageing, renders yeast a fascinating, powerful model for AD. In addition, the easy manipulation of the yeast genome and availability of methods to evaluate yeast cells rapidly in high throughput technological platforms strengthen the rationale of using yeast as a model. This review focuses on the description of the proteostasis network in yeast and its comparison with the human proteostasis network. It further elaborates on the AD-associated proteostasis failure and applications of the yeast proteostasis network to understand AD pathology and its potential to guide interventions against AD.
Collapse
Affiliation(s)
| | - Ian Macreadie
- School of Science, RMIT University, Bundoora, Victoria 3083, Australia;
| |
Collapse
|
10
|
Activate or Inhibit? Implications of Autophagy Modulation as a Therapeutic Strategy for Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21186739. [PMID: 32937909 PMCID: PMC7554997 DOI: 10.3390/ijms21186739] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases result in a range of conditions depending on the type of proteinopathy, genes affected or the location of the degeneration in the brain. Proteinopathies such as senile plaques and neurofibrillary tangles in the brain are prominent features of Alzheimer’s disease (AD). Autophagy is a highly regulated mechanism of eliminating dysfunctional organelles and proteins, and plays an important role in removing these pathogenic intracellular protein aggregates, not only in AD, but also in other neurodegenerative diseases. Activating autophagy is gaining interest as a potential therapeutic strategy for chronic diseases featuring protein aggregation and misfolding, including AD. Although autophagy activation is a promising intervention, over-activation of autophagy in neurodegenerative diseases that display impaired lysosomal clearance may accelerate pathology, suggesting that the success of any autophagy-based intervention is dependent on lysosomal clearance being functional. Additionally, the effects of autophagy activation may vary significantly depending on the physiological state of the cell, especially during proteotoxic stress and ageing. Growing evidence seems to favour a strategy of enhancing the efficacy of autophagy by preventing or reversing the impairments of the specific processes that are disrupted. Therefore, it is essential to understand the underlying causes of the autophagy defect in different neurodegenerative diseases to explore possible therapeutic approaches. This review will focus on the role of autophagy during stress and ageing, consequences that are linked to its activation and caveats in modulating this pathway as a treatment.
Collapse
|