1
|
Tillinger A, Zvozilová A, Mach M, Horváthová Ľ, Dziewiczová L, Osacká J. Single Intranasal Administration of Ucn3 Affects the Development of PTSD Symptoms in an Animal Model. Int J Mol Sci 2024; 25:11908. [PMID: 39595978 PMCID: PMC11594197 DOI: 10.3390/ijms252211908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Post-traumatic stress disorder (PTSD) is a multifactorial psychological disorder that affects different neurotransmitter systems, including the central CRH system. CRH acts via the CRHR1 and CRHR2 receptors, which exert opposite effects, i.e., anxiogenic or anxiolytic. The aim of this work was to investigate how intranasal administration of the CRHR2-specific agonist urocortin 2 (Ucn2) or urocortin 3 (Ucn3) affects manifestations of PTSD in a single prolonged stress (SPS) animal model of PTSD. Elevated plus maze (EPM) and open field (OF) tests were used to assess anxiety-like behavior. Changes in the gene expressions of CRH, CRHR1, CRHR2, glucocorticoid receptor (GR), and FKBP5 were measured in brain regions (BNST, amygdala, and PVN) responsible for modulating the stress response. The SPS animals spent less time in the OF central zone and were less mobile than the controls; however, the Ucn3 treatment reversed this effect. SPS decreased the GR and FKPB5 mRNA levels in the PVN. Ucn3 suppressed the effect of SPS on FKBP5 mRNA expression in the PVN and increased FKBP5 mRNA in the BNST and PVN compared to the stressed animals. We demonstrate that Ucn3 has the potential to ameliorate anxiety-like behavior in SPS animals and also to affect the neuroendocrine system in the BNST and PVN. In addition, we confirm the important role of CRHR2 signaling in mediating the stress response.
Collapse
MESH Headings
- Animals
- Urocortins/genetics
- Urocortins/metabolism
- Urocortins/administration & dosage
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/genetics
- Administration, Intranasal
- Disease Models, Animal
- Male
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Corticotropin-Releasing Hormone/genetics
- Rats
- Tacrolimus Binding Proteins/metabolism
- Tacrolimus Binding Proteins/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Glucocorticoid/genetics
- Anxiety/drug therapy
- Corticotropin-Releasing Hormone/metabolism
- Corticotropin-Releasing Hormone/genetics
- Behavior, Animal/drug effects
Collapse
Affiliation(s)
- Andrej Tillinger
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Alexandra Zvozilová
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Mojmír Mach
- Centre of Experimental Medicine of the Slovak Academy of Sciences, Institute of Experimental Pharmacology & Toxicology, 841 04 Bratislava, Slovakia
| | - Ľubica Horváthová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| | - Lila Dziewiczová
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, 842 15 Bratislava, Slovakia
| | - Jana Osacká
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Experimental Endocrinology, 845 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Sanguino-Gómez J, Krugers HJ. Early-life stress impairs acquisition and retrieval of fear memories: sex-effects, corticosterone modulation, and partial prevention by targeting glucocorticoid receptors at adolescent age. Neurobiol Stress 2024; 31:100636. [PMID: 38883213 PMCID: PMC11177066 DOI: 10.1016/j.ynstr.2024.100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/18/2024] Open
Abstract
The early postnatal period is a sensitive time window that is characterized by several neurodevelopmental processes that define neuronal architecture and function later in life. Here, we examined in young adult mice, using an auditory fear conditioning paradigm, whether stress during the early postnatal period 1) impacts fear acquisition and memory consolidation in male and female mice; 2) alters the fear responsiveness to corticosterone and 3) whether effects of early-life stress (ELS) can be prevented by treating mice with a glucocorticoid (GR) antagonist at adolescence. Male and female mice were exposed to a limited nesting and bedding model of ELS from postnatal day (PND) 2-9 and injected i.p with RU38486 (RU486) at adolescent age (PND 28-30). At two months of age, mice were trained in the fear conditioning (FC) paradigm (with and without post training administration of corticosterone - CORT) and freezing behavior during fear acquisition and contextual and auditory memory retrieval was scored. We observed that ELS impaired fear acquisition specifically in male mice and reduced both contextual and auditory memory retrieval in male and female mice. Acute post-training administration of CORT increased freezing levels during auditory memory retrieval in female mice but reduced freezing levels during the tone presentation in particular in control males. Treatment with RU486 prevented ELS-effects in acquisition in male mice and in females during auditory memory retrieval. In conclusion, this study highlights the long-lasting consequences of early-life stress on fear memory processing and further illustrates 1) the potential of a glucocorticoid antagonist intervention during adolescence to mitigate these effects and 2) the partial modulation of the auditory retrieval upon post training administration of CORT, with all these effects being sex-dependent.
Collapse
Affiliation(s)
| | - Harm J Krugers
- Brain Plasticity Group, SILS-CNS, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Traetta ME, Chaves Filho AM, Akinluyi ET, Tremblay MÈ. Neurodevelopmental and Neuropsychiatric Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:457-495. [PMID: 39207708 DOI: 10.1007/978-3-031-55529-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This chapter will focus on microglial involvement in neurodevelopmental and neuropsychiatric disorders, particularly autism spectrum disorder (ASD), schizophrenia and major depressive disorder (MDD). We will describe the neuroimmune risk factors that contribute to the etiopathology of these disorders across the lifespan, including both in early life and adulthood. Microglia, being the resident immune cells of the central nervous system, could play a key role in triggering and determining the outcome of these disorders. This chapter will review preclinical and clinical findings where microglial morphology and function were examined in the contexts of ASD, schizophrenia and MDD. Clinical evidence points out to altered microglial morphology and reactivity, as well as increased expression of pro-inflammatory cytokines, supporting the idea that microglial abnormalities are involved in these disorders. Indeed, animal models for these disorders found altered microglial morphology and homeostatic functions which resulted in behaviours related to these disorders. Additionally, as microglia have emerged as promising therapeutic targets, we will also address in this chapter therapies involving microglial mechanisms for the treatment of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC, Canada.
- Axe Neurosciences, Center de Recherche du CHU de Québec, Université Laval, Quebec City, QC, Canada.
- Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada.
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada.
- Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
4
|
Pharmacological Implications of Adjusting Abnormal Fear Memory: Towards the Treatment of Post-Traumatic Stress Disorder. Pharmaceuticals (Basel) 2022; 15:ph15070788. [PMID: 35890087 PMCID: PMC9322538 DOI: 10.3390/ph15070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a unique clinical mental abnormality presenting a cluster of symptoms in which patients primarily experience flashbacks, nightmares and uncontrollable thoughts about the event that triggered their PTSD. Patients with PTSD may also have comorbid depression and anxiety in an intractable and long-term course, which makes establishing a comprehensive treatment plan difficult and complicated. The present article reviews current pharmacological manipulations for adjusting abnormal fear memory. The roles of the central monoaminergic systems (including serotonin, norepinephrine and dopamine) within the fear circuit areas and the involvement of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid receptor (GR) are explored based on attempts to integrate current clinical and preclinical basic studies. In this review, we explain how these therapeutic paradigms function based on their connections to stages of the abnormal fear memory process from condition to extinction. This may provide useful translational interpretations for clinicians to manage PTSD.
Collapse
|
5
|
Lin CC, Cheng PY, Hsiao M, Liu YP. Effects of RU486 in Treatment of Traumatic Stress-Induced Glucocorticoid Dysregulation and Fear-Related Abnormalities: Early versus Late Intervention. Int J Mol Sci 2022; 23:ijms23105494. [PMID: 35628305 PMCID: PMC9141845 DOI: 10.3390/ijms23105494] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/08/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Central glucocorticoid receptor (GR) activity is enhanced following traumatic events, playing a key role in the stress-related cognitive abnormalities of posttraumatic stress disorder (PTSD). GR antagonists are expected to have potential as pharmacological agents to treat PTSD-related symptoms such as anxiety and fear memory disruption. However, an incubation period is usually required and stress-induced abnormalities do not develop immediately following the trauma; thus, the optimal intervention timing should be considered. Single prolonged stress (SPS) was employed as a rodent PTSD model to examine the effects of early or late (1–7 versus 8–14 days after the SPS) sub-chronic RU486 (a GR antagonist) administration. Behaviorally, fear conditioning and anxiety behavior were assessed using the fear-conditioning test and elevated T-maze (ETM), respectively. Neurochemically, the expressions of GR, FK506-binding proteins 4 and 5 (FKBP4 and FKBP5), and early growth response-1 (Egr-1) were assessed in the hippocampus, medial prefrontal cortex (mPFC), amygdala, and hypothalamus, together with the level of plasma corticosterone. Early RU486 administration could inhibit SPS-induced behavioral abnormalities and glucocorticoid system dysregulation by reversing the SPS-induced fear extinction deficit, and preventing SPS-reduced plasma corticosterone levels and SPS-induced Egr-1 overexpression in the hippocampus. Early RU486 administration following SPS also increased the FKBP5 level in the hippocampus and hypothalamus. Finally, both early and late RU486 administration inhibited the elevated hippocampal FKBP4 level and hypothalamus GR level in the SPS rats. Early intervention with a GR antagonist aids in the correction of traumatic stress-induced fear and anxiety dysregulation.
Collapse
Affiliation(s)
- Chen-Cheng Lin
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Pao-Yun Cheng
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan;
| | - Yia-Ping Liu
- Laboratory of Cognitive Neuroscience, Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei 11490, Taiwan;
- Department of Psychiatry, Cheng Hsin General Hospital, Taipei 11220, Taiwan
- Department of Psychiatry, Tri-Service General Hospital, Taipei 11490, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Ding J, Chen X, Han F, Meijer OC. An Advanced Transcriptional Response to Corticosterone After Single Prolonged Stress in Male Rats. Front Behav Neurosci 2021; 15:756903. [PMID: 34867228 PMCID: PMC8636037 DOI: 10.3389/fnbeh.2021.756903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/13/2021] [Indexed: 11/15/2022] Open
Abstract
Stress-related neuropsychiatric disorders are often accompanied by dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. In patients suffering from post-traumatic stress disorder (PTSD), increased sensitivity of glucocorticoid negative feedback has regularly been observed. The single prolonged stress (SPS) paradigm was developed to model increased negative feedback and other aspects of PTSD in rats. In this study, we used a setup that precluded the evaluation of negative feedback but rather served to test the hypothesis of the enhanced glucocorticoid receptor (GR) signaling in higher brain areas. We injected corticosterone or vehicle 7 days after SPS and evaluated plasma corticosterone, as well as gene expression in the dorsal hippocampus and amygdala. We observed a strikingly rapid change in the expression of established GR target genes (t = 30 min) only in the SPS group on exogenous corticosterone injection. Our results extend the notion of increased GR sensitivity in PTSD to include transcriptional responses in the hippocampus.
Collapse
Affiliation(s)
- Jinlan Ding
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Xinzhao Chen
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Fang Han
- PTSD Lab, Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|