1
|
Linzner N, Bartel A, Schumacher V, Grau JH, Wyler E, Preuß H, Garske S, Bitzegeio J, Kirst EB, Liere K, Hoppe S, Borodina TA, Altmüller J, Landthaler M, Meixner M, Sagebiel D, Böckelmann U. Effective Inhibitor Removal from Wastewater Samples Increases Sensitivity of RT-dPCR and Sequencing Analyses and Enhances the Stability of Wastewater-Based Surveillance. Microorganisms 2024; 12:2475. [PMID: 39770678 PMCID: PMC11728302 DOI: 10.3390/microorganisms12122475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Wastewater-based surveillance (WBS) is a proven tool for monitoring population-level infection events. Wastewater contains high concentrations of inhibitors, which contaminate the total nucleic acids (TNA) extracted from these samples. We found that TNA extracts from raw influent of Berlin wastewater treatment plants contained highly variable amounts of inhibitors that impaired molecular analyses like dPCR and next-generation sequencing (NGS). By using dilutions, we were able to detect inhibitory effects. To enhance WBS sensitivity and stability, we applied a combination of PCR inhibitor removal and TNA dilution (PIR+D). This approach led to a 26-fold increase in measured SARS-CoV-2 concentrations, practically reducing the detection limit. Additionally, we observed a substantial increase in the stability of the time series. We define suitable stability as a mean absolute error (MAE) below 0.1 log10 copies/L and a geometric mean relative absolute error (GMRAE) below 26%. Using PIR+D, the MAE could be reduced from 0.219 to 0.097 and the GMRAE from 65.5% to 26.0%, and even further in real-world WBS. Furthermore, PIR+D improved SARS-CoV-2 genome alignment and coverage in amplicon-based NGS for low to medium concentrations. In conclusion, we strongly recommend both the monitoring and removal of inhibitors from samples for WBS.
Collapse
Affiliation(s)
- Nico Linzner
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | - Alexander Bartel
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Vera Schumacher
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | | | - Emanuel Wyler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Henrike Preuß
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| | - Sonja Garske
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Julia Bitzegeio
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Elisabeth Barbara Kirst
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Karsten Liere
- Amedes Medizinische Dienstleistungen GmbH, 37081 Göttingen, Germany
| | - Sebastian Hoppe
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Tatiana A. Borodina
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Janine Altmüller
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Genomics Technology Platform, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Markus Landthaler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Martin Meixner
- Amedes Medizinische Dienstleistungen GmbH, 37081 Göttingen, Germany
| | - Daniel Sagebiel
- Unit for Surveillance and Epidemiology of Infectious Diseases, State Office for Health and Social Affairs (SOHSA), 10559 Berlin, Germany
| | - Uta Böckelmann
- Laboratory of Berliner Wasserbetriebe, Berliner Wasserbetriebe, 13629 Berlin, Germany (U.B.)
| |
Collapse
|
2
|
Furtado R, Coelho A, Morais M, Leitão AL, Saraiva M, Correia CB, Batista R. Comparison of ISO 6579–1, VIDAS Easy SLM, and SureFast® Salmonella ONE Real-time PCR, for Salmonella Detection in Different Groups of Foodstuffs. FOOD ANAL METHOD 2021. [DOI: 10.1007/s12161-021-02114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Chik AHS, Glier MB, Servos M, Mangat CS, Pang XL, Qiu Y, D'Aoust PM, Burnet JB, Delatolla R, Dorner S, Geng Q, Giesy JP, McKay RM, Mulvey MR, Prystajecky N, Srikanthan N, Xie Y, Conant B, Hrudey SE. Comparison of approaches to quantify SARS-CoV-2 in wastewater using RT-qPCR: Results and implications from a collaborative inter-laboratory study in Canada. J Environ Sci (China) 2021; 107:218-229. [PMID: 34412784 PMCID: PMC7929783 DOI: 10.1016/j.jes.2021.01.029] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 05/20/2023]
Abstract
Detection of SARS-CoV-2 RNA in wastewater is a promising tool for informing public health decisions during the COVID-19 pandemic. However, approaches for its analysis by use of reverse transcription quantitative polymerase chain reaction (RT-qPCR) are still far from standardized globally. To characterize inter- and intra-laboratory variability among results when using various methods deployed across Canada, aliquots from a real wastewater sample were spiked with surrogates of SARS-CoV-2 (gamma-radiation inactivated SARS-CoV-2 and human coronavirus strain 229E [HCoV-229E]) at low and high levels then provided "blind" to eight laboratories. Concentration estimates reported by individual laboratories were consistently within a 1.0-log10 range for aliquots of the same spiked condition. All laboratories distinguished between low- and high-spikes for both surrogates. As expected, greater variability was observed in the results amongst laboratories than within individual laboratories, but SARS-CoV-2 RNA concentration estimates for each spiked condition remained mostly within 1.0-log10 ranges. The no-spike wastewater aliquots provided yielded non-detects or trace levels (<20 gene copies/mL) of SARS-CoV-2 RNA. Detections appear linked to methods that included or focused on the solids fraction of the wastewater matrix and might represent in-situ SARS-CoV-2 to the wastewater sample. HCoV-229E RNA was not detected in the no-spike aliquots. Overall, all methods yielded comparable results at the conditions tested. Partitioning behavior of SARS-CoV-2 and spiked surrogates in wastewater should be considered to evaluate method effectiveness. A consistent method and laboratory to explore wastewater SARS-CoV-2 temporal trends for a given system, with appropriate quality control protocols and documented in adequate detail should succeed.
Collapse
Affiliation(s)
- Alex H S Chik
- Consultant to Canadian Water Network Inc., Kitchener, Canada; Presently at Ontario Clean Water Agency, Mississauga, Canada
| | - Melissa B Glier
- Environmental Microbiology, BC Centre for Disease Control, Vancouver, Canada
| | - Mark Servos
- Department of Biology, University of Waterloo, Waterloo, Canada
| | - Chand S Mangat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Xiao-Li Pang
- Public Health Laboratory, Alberta Precision Laboratory, Edmonton, Canada; Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Yuanyuan Qiu
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | | | - Jean-Baptiste Burnet
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | | | - Sarah Dorner
- Département des génies civil, géologique et des mines, Polytechnique Montréal, Montréal, Canada
| | - Qiudi Geng
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Canada
| | - John P Giesy
- Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | - Robert Mike McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Canada
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | - Natalie Prystajecky
- Environmental Microbiology, BC Centre for Disease Control, Vancouver, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | | | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon, Canada
| | | | - Steve E Hrudey
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| |
Collapse
|
4
|
Assurian A, Murphy H, Shipley A, Cinar HN, DA Silva A, Almeria S. Assessment of Commercial DNA Cleanup Kits for Elimination of Real-Time PCR Inhibitors in the Detection of Cyclospora cayetanensis in Cilantro. J Food Prot 2020; 83:1863-1870. [PMID: 32722800 DOI: 10.4315/jfp-20-139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/09/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Inhibited reactions have occasionally been observed when cilantro samples were processed for the detection of Cyclospora cayetanensis using quantitative real-time PCR (qPCR). Partial or total inhibition of PCR reactions, including qPCR, can occur, leading to decreased sensitivity or false-negative results. If inhibition occurs, this implies the need for additional purification or cleanup treatments of the extracted DNA to remove inhibitors prior to molecular detection. Our objective was to evaluate the performance of five commercial DNA cleanup kits (QIAquick purification kit from Qiagen [kit 1], OneStep PCR inhibitor removal by Zymo Research [kit 2], NucleoSpin genomic DNA cleanup XS from Macherey-Nagel [kit 3], DNA IQ system by Promega [kit 4], and DNeasy PowerPlant pro kit from Qiagen [5]) to minimize qPCR inhibition using the U.S. Food and Drug Administration-validated Bacteriological Analytical Manual (BAM) Chapter 19b method for detection of C. cayetanensis in cilantro samples containing soil. Each of the five commercial DNA cleanup kits evaluated was able to reduce the qPCR internal amplification control cycle threshold values to those considered to be normal for noninhibited samples, allowing unambiguous interpretation of results in cilantro samples seeded at both a high oocyst level (200 oocysts) and a low oocyst level (10 oocysts). Of the five kits compared, kits 1, 2, and 3 did not show significant differences in the detection of C. cayetanensis, while significantly higher cycle threshold values, indicating lower recovery of the target DNA, were observed from kits 4 and/or 5 in samples seeded with 200 and 10 oocysts (P < 0.05). This comparative study provides recommendations on the use of commercial cleanup kits which could be implemented when inhibition is observed in the detection of C. cayetanensis in cilantro samples using the BAM Chapter 19b method. HIGHLIGHTS
Collapse
Affiliation(s)
- Angela Assurian
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20740
| | - Helen Murphy
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Alicia Shipley
- Joint Institute for Food Safety and Applied Nutrition (JIFSAN), University of Maryland, College Park, Maryland 20740
| | - Hediye Nese Cinar
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Alexandre DA Silva
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA
| | - Sonia Almeria
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, Maryland 20805, USA.,(ORCID: https://orcid.org/0000-0002-0558-5488 [S.A.])
| |
Collapse
|
5
|
Guarines KM, Mendes RPG, Cordeiro MT, Miagostovich MP, Gil LHVG, Green KY, Pena LJ. Absence of norovirus contamination in shellfish harvested and commercialized in the Northeast coast of Brazil. ACTA ACUST UNITED AC 2020; 53:e9529. [PMID: 32965324 PMCID: PMC7510241 DOI: 10.1590/1414-431x20209529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Norovirus (NoV) is the main cause of gastroenteritis outbreaks worldwide. Although NoV spreads mainly from person to person, it is estimated that a large proportion of NoV outbreaks are caused by foodborne transmission. Bivalve mollusks are one of the most important foods involved in NoV transmission to humans. Little is known about NoV prevalence in shellfish harvested and commercialized in Brazil. The aim of this study was to map, for the first time, the distribution of NoV contamination in oysters and mussels harvested and commercialized in the coast of Pernambuco state, northeast Brazil. A total of 380 mollusks (260 oysters and 120 mussels) were collected between February and August 2017 either directly from harvesting areas or obtained from beach vendors at 17 sites in Pernambuco. Samples were processed and tested for NoV contamination using a SYBR Green real-time PCR assay. All samples were negative for NoV GI or GII contamination, suggesting a low risk of NoV contamination from this food source during the study period. Additional surveys in different areas of the Brazilian coast are warranted to monitor the risk of NoV infection upon seafood consumption.
Collapse
Affiliation(s)
- K M Guarines
- Departamento de Virologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brasil
| | - R P G Mendes
- Departamento de Virologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brasil
| | - M T Cordeiro
- Departamento de Virologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brasil
| | - M P Miagostovich
- Laboratório de Virologia Comparativa e Ambiental, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - L H V G Gil
- Departamento de Virologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brasil
| | - K Y Green
- Caliciviruses Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L J Pena
- Departamento de Virologia, Instituto Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco, Brasil
| |
Collapse
|
6
|
Waggoner JJ, Rojas A, Pinsky BA. Yellow Fever Virus: Diagnostics for a Persistent Arboviral Threat. J Clin Microbiol 2018; 56:e00827-18. [PMID: 30021822 PMCID: PMC6156298 DOI: 10.1128/jcm.00827-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Yellow fever (YF) is the prototypical hemorrhagic fever and results from infection with yellow fever virus (YFV), which is endemic to regions of Africa and South America. Despite the availability of an effective vaccine, YFV continues to cause disease throughout regions where it is endemic, including intermittent large outbreaks among undervaccinated populations. A number of diagnostic methods and assays have been described for the detection of YFV infection, including viral culture, molecular testing, serology, and antigen detection. Commercial diagnostics are not widely available, and testing is generally performed at a small number of reference laboratories. The goal of this article, therefore, is to review available clinical diagnostics for YFV, which may not be familiar to many practitioners outside areas where it is endemic. Additionally, we identify gaps in our current knowledge about YF that pertain to diagnosis and describe interventions that may improve YFV detection.
Collapse
Affiliation(s)
- Jesse J Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Alejandra Rojas
- Departamento de Producción, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Asunción, Paraguay
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Norovirus Infection. EMERGING AND RE-EMERGING INFECTIOUS DISEASES OF LIVESTOCK 2017. [PMCID: PMC7122952 DOI: 10.1007/978-3-319-47426-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Chen H, Hu Y. Molecular Diagnostic Methods for Detection and Characterization of Human Noroviruses. Open Microbiol J 2016; 10:78-89. [PMID: 27335620 PMCID: PMC4899541 DOI: 10.2174/1874285801610010078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 02/04/2023] Open
Abstract
Human noroviruses are a group of viral agents that afflict people of all age groups. The viruses are now recognized as the most common causative agent of nonbacterial acute gastroenteritis and foodborne viral illness worldwide. However, they have been considered to play insignificant roles in the disease burden of acute gastroenteritis for the past decades until the recent advent of new and more sensitive molecular diagnostic methods. The availability and application of the molecular diagnostic methods have led to enhanced detection of noroviruses in clinical, food and environmental samples, significantly increasing the recognition of noroviruses as an etiologic agent of epidemic and sporadic acute gastroenteritis. This article aims to summarize recent efforts made for the development of molecular methods for the detection and characterization of human noroviruses.
Collapse
Affiliation(s)
- Haifeng Chen
- Division of Molecular Biology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Yuan Hu
- Northeast Region Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jamaica, NY, USA
| |
Collapse
|
9
|
Molecular Diagnosis of Gastrointestinal Infections. Mol Microbiol 2016. [DOI: 10.1128/9781555819071.ch27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Di Felice E, Mauroy A, Pozzo FD, Thiry D, Ceci C, Di Martino B, Marsilio F, Thiry E. Bovine noroviruses: A missing component of calf diarrhoea diagnosis. Vet J 2015; 207:53-62. [PMID: 26631944 PMCID: PMC7110452 DOI: 10.1016/j.tvjl.2015.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/05/2023]
Abstract
Noroviruses are RNA viruses that belong to the Genus Norovirus, Family Caliciviridae, and infect human beings and several animal species, including cattle. Bovine norovirus infections have been detected in cattle of a range of different ages throughout the world. Currently there is no suitable cell culture system for these viruses and information on their pathogenesis is limited. Molecular and serological tests have been developed, but are complicated by the high genetic and antigenic diversity of bovine noroviruses. Bovine noroviruses can be detected frequently in faecal samples of diarrhoeic calves, either alone or in association with other common enteric pathogens, suggesting a role for these viruses in the aetiology of calf enteritis.
Collapse
Affiliation(s)
| | - Axel Mauroy
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium.
| | - Fabiana Dal Pozzo
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Damien Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| | - Chiara Ceci
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Barbara Di Martino
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Fulvio Marsilio
- Faculty of Veterinary Medicine, Università degli studi di Teramo, Teramo, Italy
| | - Etienne Thiry
- Faculty of Veterinary Medicine and Fundamental and Applied Research on Animal and Health Center, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
11
|
Geng T, Mathies RA. Minimizing inhibition of PCR-STR typing using digital agarose droplet microfluidics. Forensic Sci Int Genet 2015; 14:203-9. [DOI: 10.1016/j.fsigen.2014.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
|
12
|
Abstract
Norovirus, an RNA virus of the family Caliciviridae, is a human enteric pathogen that causes substantial morbidity across both health care and community settings. Several factors enhance the transmissibility of norovirus, including the small inoculum required to produce infection (<100 viral particles), prolonged viral shedding, and its ability to survive in the environment. In this review, we describe the basic virology and immunology of noroviruses, the clinical disease resulting from infection and its diagnosis and management, as well as host and pathogen factors that complicate vaccine development. Additionally, we discuss overall epidemiology, infection control strategies, and global reporting efforts aimed at controlling this worldwide cause of acute gastroenteritis. Prompt implementation of infection control measures remains the mainstay of norovirus outbreak management.
Collapse
Affiliation(s)
- Elizabeth Robilotti
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Stan Deresinski
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A Pinsky
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Podgornik A, Yamamoto S, Peterka M, Krajnc NL. Fast separation of large biomolecules using short monolithic columns. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 927:80-9. [DOI: 10.1016/j.jchromb.2013.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/01/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
|
14
|
Ward P, Poitras E, Leblanc D, Gagnon CA, Brassard J, Houde A. Comparison of different RT-qPCR assays for the detection of human and bovine group A rotaviruses and characterization by sequences analysis of genes encoding VP4 and VP7 capsid proteins. J Appl Microbiol 2013; 114:1435-48. [PMID: 23421708 DOI: 10.1111/jam.12165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/11/2013] [Accepted: 01/23/2013] [Indexed: 12/12/2022]
Abstract
AIMS The aim of this study was to compare the performance of four RT-qPCR assays for the detection of human and bovine group A rotaviruses and to characterize the positive samples by sequence analysis of VP4 and VP7 genes. METHODS AND RESULTS RNA extracted from eight human rotavirus strains, and a panel of 33 human and 25 bovine faecal samples was subjected to different RT-qPCR detection systems. Among these assays, only RT-qPCR primers and probe systems B and C were able to detect all human rotavirus strains from cell culture solutions and faecal samples. However, the results showed that the system C was generally more sensitive by one or two logs than the other RT-qPCR assays tested. With the bovine faecal samples, the most efficient RT-qPCR systems were B and A with the detection in 100 and 92% of samples tested, respectively. Human group A rotavirus G1P[8] and bovine G6P[11] were the most frequently used strains identified in this study. A G3P[9] strain, closely related to a feline rotavirus isolated in the USA, was also discovered in a human rotavirus infection. CONCLUSION The RT-qPCR system B was the only TaqMan assay evaluated in this study able to detect rotavirus RNA in all positive human and bovine faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY Utilization of only one RT-qPCR for the detection of human and bovine group A rotaviruses and the possibility of human infection by a feline rotavirus strain.
Collapse
Affiliation(s)
- P Ward
- Agriculture and Agri-Food Canada, Food Research and Development Centre, Saint-Hyacinthe, QC, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Stals A, Mathijs E, Baert L, Botteldoorn N, Denayer S, Mauroy A, Scipioni A, Daube G, Dierick K, Herman L, Van Coillie E, Thiry E, Uyttendaele M. Molecular detection and genotyping of noroviruses. FOOD AND ENVIRONMENTAL VIROLOGY 2012; 4:153-67. [PMID: 23412888 DOI: 10.1007/s12560-012-9092-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 10/06/2012] [Indexed: 05/13/2023]
Abstract
Noroviruses (NoVs) are a major cause of gastroenteritis worldwide in humans and animals and are known as very infectious viral agents. They are spread through feces and vomit via several transmission routes involving person-to-person contact, food, and water. Investigation of these transmission routes requires sensitive methods for detection of NoVs. As NoVs cannot be cultivated to date, detection of these viruses relies on the use of molecular methods such as (real-time) reverse transcriptase polymerase chain reaction (RT-PCR). Regardless of the matrix, detection of NoVs generally requires three subsequent steps: a virus extraction step, RNA purification, and molecular detection of the purified RNA, occasionally followed by molecular genotyping. The current review mainly focused on the molecular detection and genotyping of NoVs. The most conserved region in the genome of human infective NoVs is the ORF1/ORF2 junction and has been used as a preferred target region for molecular detection of NoVs by methods such as (real-time) RT-PCR, NASBA, and LAMP. In case of animal NoVs, broad range molecular assays have most frequently been applied for molecular detection. Regarding genotyping of NoVs, five regions situated in the polymerase and capsid genes have been used for conventional RT-PCR amplification and sequencing. As the expected levels of NoVs on food and in water are very low and inhibition of molecular methods can occur in these matrices, quality control including adequate positive and negative controls is an essential part of NoV detection. Although the development of molecular methods for NoV detection has certainly aided in the understanding of NoV transmission, it has also led to new problems such as the question whether low levels of human NoV detected on fresh produce and shellfish could pose a threat to public health.
Collapse
Affiliation(s)
- Ambroos Stals
- Laboratory of Food Microbiology and Food Preservation, Faculty of Bioscience Engineering, Department of Food Safety and Food Quality, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Reliability of non-culturable virus monitoring by PCR-based detection methods in environmental waters containing various concentrations of target RNA. J Microbiol 2012; 50:726-34. [PMID: 23124739 DOI: 10.1007/s12275-012-2279-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 06/07/2012] [Indexed: 12/27/2022]
Abstract
Owing to the lack of practical cell culture system for human noroviruses (HuNoV), various detection methods based on conventional reverse transcription-PCR (RT-PCR) and the quantitative real-time PCR have been major tools for monitoring environmental water safety. In this study, we showed that the proportion of water sample concentrates used for one-step RT-PCR significantly influences false-negative findings of the non-culturable viruses. In total, 59 archived samples of previously analyzed water concentrates were reexamined for HuNoV RNA by the one-step RT-PCR and semi-nested PCR. Using new aliquots for RNA extraction for every trial, up to 20 PCR trials were performed for each archive to determine whether the crosscheck results supported the previous determinations. We reconfirmed that 27.6% (8/29) of the samples were HuNoV-positive samples: 6.7% (1/15) from groundwater, 33.3% (3/9) from river water, and 80% (4/5) from treated sewage effluent (TSE). These results corresponded to the ratio of previously negative HuNoV samples now identified as positive (8/30): 6.7% (1/15) from groundwater, 20% (1/5) from river water, and 60% (6/10) from TSE. To elucidate the cause of these results, 16 different concentrations of murine norovirus (MNV) RNA (from 2×10(2) to 8×10(3) copies, divided into 10 tubes for each concentration) were subjected to one-step RT-PCR. The detection frequency and reproducibility decreased sharply when the number of MNV RNA copies fell below threshold levels. These observations suggest that the proportion of water concentrate used for PCR-based detection should be considered carefully when deciding viral presence in certain types of environmental water, particularly in regard with legal controls.
Collapse
|
17
|
Gibson KE, Schwab KJ, Spencer SK, Borchardt MA. Measuring and mitigating inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from large-volume environmental water samples. WATER RESEARCH 2012; 46:4281-91. [PMID: 22673345 DOI: 10.1016/j.watres.2012.04.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/13/2012] [Accepted: 04/19/2012] [Indexed: 05/02/2023]
Abstract
Naturally-occurring inhibitory compounds are a major concern during qPCR and RT-qPCR analysis of environmental samples, particularly large volume water samples. Here, a standardized method for measuring and mitigating sample inhibition in environmental water concentrates is described. Specifically, the method 1) employs a commercially available standard RNA control; 2) defines inhibition by the change in the quantification cycle (C(q)) of the standard RNA control when added to the sample concentrate; and 3) calculates a dilution factor using a mathematical formula applied to the change in C(q) to indicate the specific volume of nuclease-free water necessary to dilute the effect of inhibitors. The standardized inhibition method was applied to 3,193 large-volume water (surface, groundwater, drinking water, agricultural runoff, sewage) concentrates of which 1,074 (34%) were inhibited. Inhibition level was not related to sample volume. Samples collected from the same locations over a one to two year period had widely variable inhibition levels. The proportion of samples that could have been reported as false negatives if inhibition had not been mitigated was between 0.3% and 71%, depending on water source. These findings emphasize the importance of measuring and mitigating inhibition when reporting qPCR results for viral pathogens in environmental waters to minimize the likelihood of reporting false negatives and under-quantifying virus concentration.
Collapse
Affiliation(s)
- K E Gibson
- The Johns Hopkins Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering, and Johns Hopkins Center for Water and Health, 615 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
18
|
Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors - occurrence, properties and removal. J Appl Microbiol 2012; 113:1014-26. [PMID: 22747964 DOI: 10.1111/j.1365-2672.2012.05384.x] [Citation(s) in RCA: 1178] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/14/2012] [Accepted: 06/27/2012] [Indexed: 12/21/2022]
Abstract
The polymerase chain reaction (PCR) is increasingly used as the standard method for detection and characterization of microorganisms and genetic markers in a variety of sample types. However, the method is prone to inhibiting substances, which may be present in the analysed sample and which may affect the sensitivity of the assay or even lead to false-negative results. The PCR inhibitors represent a diverse group of substances with different properties and mechanisms of action. Some of them are predominantly found in specific types of samples thus necessitating matrix-specific protocols for preparation of nucleic acids before PCR. A variety of protocols have been developed to remove the PCR inhibitors. This review focuses on the general properties of PCR inhibitors and their occurrence in specific matrices. Strategies for their removal from the sample and for quality control by assessing their influence on the individual PCR test are presented and discussed.
Collapse
Affiliation(s)
- C Schrader
- Food Hygiene and Safety Concepts, Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | |
Collapse
|
19
|
Hartmann EM, Halden RU. Analytical methods for the detection of viruses in food by example of CCL-3 bioagents. Anal Bioanal Chem 2012; 404:2527-37. [PMID: 22526652 DOI: 10.1007/s00216-012-5974-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/24/2012] [Accepted: 03/26/2012] [Indexed: 12/26/2022]
Abstract
This critical review presents challenges and strategies in the detection of viral contaminants in food products. Adenovirus, caliciviruses, enteroviruses, and hepatitis A are emerging contaminant viruses. These viruses contaminate a variety of food products, including fruits, vegetables, shellfish, and ready-to-eat processed foods. The diversity of targets and sample matrices presents unique challenges to virus monitoring that have been addressed by a wide array of processing and detection methods. This review covers sample acquisition and handling, virus recovery/concentration, and the determination of targets using molecular biology and mass-spectrometric approaches. The concentration methods discussed include precipitation, antibody-based concentration, and filtration; the detection methods discussed include microscopy, polymerase chain reaction, nucleic acid sequence-based amplification, and mass spectrometry.
Collapse
Affiliation(s)
- E M Hartmann
- The Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85006-5701, USA
| | | |
Collapse
|
20
|
Cho MG, Jeong HM, Ahn JB, Kim KY. Detection of feline calicivirus as norovirus surrogate in food and water sources using filtration and real-time RT-PCR. Food Sci Biotechnol 2011. [DOI: 10.1007/s10068-011-0204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
21
|
Infection of calves with bovine norovirus GIII.1 strain Jena virus: an experimental model to study the pathogenesis of norovirus infection. J Virol 2011; 85:12013-21. [PMID: 21880760 DOI: 10.1128/jvi.05342-11] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The experimental infection of newborn calves with bovine norovirus was used as a homologous large animal model to study the pathogenesis of norovirus infection and to determine target cells for viral replication. Six newborn calves were inoculated orally with Jena virus (JV), a bovine norovirus GIII.1 strain, and six calves served as mock-inoculated controls. Following infection, calves were euthanized before the onset of diarrhea (12 h postinoculation [hpi]), shortly after the onset of diarrhea (18 to 21 hpi), and postconvalescence (4 days pi [dpi]). Calves inoculated with JV developed severe watery diarrhea at 14 to 16 hpi, and this symptom lasted for 53.5 to 67.0 h. Intestinal lesions were characterized by severe villus atrophy together with loss and attenuation of villus epithelium. Viral capsid antigen (JV antigen) was detected by immunohistochemistry in the cytoplasm of epithelial cells on villi. In addition, granular material positive for JV antigen was detected in the lamina propria of villi. Lesions first appeared at 12 hpi and were most extensive at 18 to 19 hpi, extending from midjejunum to ileum. The intestinal mucosa had completely recovered at 4 dpi. There was no indication of systemic infection as described for norovirus infection in mice. JV was found in intestinal contents by reverse transcription-PCR (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) as early as 12 hpi. Fecal shedding of the virus started at 13 hpi and stopped at 23 hpi or at necropsy (4 dpi), respectively. Throughout the trial, none of the control calves tested positive for JV by ELISA or RT-PCR.
Collapse
|
22
|
Molecular Diagnosis of Gastrointestinal Infections. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Bovine norovirus: carbohydrate ligand, environmental contamination, and potential cross-species transmission via oysters. Appl Environ Microbiol 2010; 76:6404-11. [PMID: 20709837 DOI: 10.1128/aem.00671-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Noroviruses (NoV) are major agents of acute gastroenteritis in humans and the primary pathogens of shellfish-related outbreaks. Previous studies showed that some human strains bind to oyster tissues through carbohydrate ligands that are similar to their human receptors. Thus, based on presentation of shared norovirus carbohydrate ligands, oysters could selectively concentrate animal strains with increased ability to overcome species barriers. In comparison with human GI and GII strains, bovine GIII NoV strains, although frequently detected in bovine feces and waters of two estuaries of Brittany, were seldom detected in oysters grown in these estuaries. Characterization of the carbohydrate ligand from a new GIII strain indicated recognition of the alpha-galactosidase (α-Gal) epitope not expressed by humans, similar to the GIII.2 Newbury2 strain. This ligand was not detectable on oyster tissues, suggesting that oysters may not be able to accumulate substantial amounts of GIII strains due to the lack of shared carbohydrate ligand and that they should be unable to contribute to select GIII strains with an increased ability to recognize humans.
Collapse
|
24
|
Rump LV, Asamoah B, Gonzalez-Escalona N. Comparison of commercial RNA extraction kits for preparation of DNA-free total RNA from Salmonella cells. BMC Res Notes 2010; 3:211. [PMID: 20663210 PMCID: PMC3161365 DOI: 10.1186/1756-0500-3-211] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/27/2010] [Indexed: 12/23/2022] Open
Abstract
Background The isolation of DNA-free RNA is a crucial step in the reverse transcription PCR (RT-PCR). Every RNA extraction procedure results in RNA samples contaminated with genomic DNA, which can cause false-positive outcomes in highly sensitive applications, including a recently developed quantitative real-time PCR (RT-qPCR) assay that targets invA mRNA for the detection of live Salmonella cells. The assay of this specific mRNA can be used to indicate the presence of live, as opposed to dead, cells of Salmonella enterica in a food matrix. Findings We evaluated the ability of five RNA extraction kits to produce RNA preparations from exponentially growing Salmonella cells. The acceptability of the preparations for use in downstream applications such as RT-qPCR was judged in terms of the total amount of RNA recovered, the integrity of the RNA molecules, and minimal content of DNA. The five kits produced RNA preparations that differed markedly in yield, integrity of the Salmonella RNA and the amount of contaminant DNA. The greatest RNA recovery was achieved with the MasterPure kit; however, the preparation contained high levels of genomic DNA. The UltraClean extraction kit gave a low level of RNA recovery with a poor level of integrity. The RNeasy Mini, RiboPure and PureLink extraction kits produced high-quality, DNA-free RNA suitable for Salmonella detection by RT-qPCR. Conclusions We showed that the RNeasy Mini and PureLink RNA extraction kits were the most suitable for the detection of Salmonella invA mRNA by RT-qPCR. The use of these two kits will greatly reduce the frequency of false-positive results and might allow fast RT-qPCR determination of invA mRNA produced by viable Salmonella in food samples.
Collapse
Affiliation(s)
- Lydia V Rump
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD 20740, USA.
| | | | | |
Collapse
|
25
|
Jor E, Myrmel M, Jonassen CM. SYBR Green based real-time RT-PCR assay for detection and genotype prediction of bovine noroviruses and assessment of clinical significance in Norway. J Virol Methods 2010; 169:1-7. [PMID: 20381534 PMCID: PMC7112832 DOI: 10.1016/j.jviromet.2010.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 03/17/2010] [Accepted: 03/30/2010] [Indexed: 11/25/2022]
Abstract
A novel SYBR Green based real-time RT-PCR assay for detection of genogroup III bovine noroviruses (BoNoV) was developed and the assay applied to 419 faecal samples from calves with and without diarrhoea. The samples were obtained from 190 Norwegian dairy and beef herds. BoNoV was detected in 49.6% of the samples from 61.1% of the herds indicating that BoNoV is ubiquitous in Norway. The overall prevalence was not significantly different in diarrhoea and non-diarrhoea samples. Analyses of polymerase gene sequences revealed both genotype III/1 and III/2 with genotype III/2 (Newbury2-like) being the most prevalent. Detected capsid sequences were restricted to Newbury2-like and the chimeric Bo/Thirsk10/00/UK strain. The RNA polymerase genotypes of the circulating BoNoVs in Norway were predicted by melting temperature analysis. Additional data from a challenge experiment suggest that a high proportion of young calves are shedding low levels of BoNoV for a prolonged time after recovering from the associated diarrhoea. The findings may explain some of the discrepancies in detection rates from previous studies and explain why some studies have failed to detect significant prevalence differences between calves with and without diarrhoea. It may also shed new light on some epidemiological aspects of norovirus infections.
Collapse
Affiliation(s)
- Evert Jor
- Department of Animal Health, National Veterinary Institute, PO Box 750, Sentrum, NO-0106 Oslo, Norway.
| | | | | |
Collapse
|
26
|
Deer D, Lampel K, González-Escalona N. A versatile internal control for use as DNA in real-time PCR and as RNA in real-time reverse transcription PCR assays. Lett Appl Microbiol 2010; 50:366-72. [DOI: 10.1111/j.1472-765x.2010.02804.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Vemulapalli R, Gulani J, Santrich C. A real-time TaqMan RT-PCR assay with an internal amplification control for rapid detection of transmissible gastroenteritis virus in swine fecal samples. J Virol Methods 2009; 162:231-5. [PMID: 19729039 PMCID: PMC7112873 DOI: 10.1016/j.jviromet.2009.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/16/2009] [Accepted: 08/25/2009] [Indexed: 01/22/2023]
Abstract
A TaqMan probe-based real-time RT-PCR assay was developed for simultaneous detection of RNA of transmissible gastroenteritis virus (TGEV) in pig fecal samples and RNA of enhanced green fluorescent protein (EGFP) added exogenously as an internal amplification control. The TGEV primers and probe were designed to be specific to a portion of the S gene sequence conserved in all TGEV isolates, but absent in the closely related porcine respiratory coronaviruses. The optimized TaqMan assay detected a minimum of 2.8 copies of in vitro transcribed RNA of the target S gene and RNA extracted from 1 TCID50/ml of TGEV. Using 113 clinical samples received at our diagnostic laboratory over a 4-year period, the performance of the assay was tested and compared with that of a previously described nested RT-PCR assay. All the fecal samples which tested positive for TGEV by the nested RT-PCR assay also tested positive by the TaqMan assay. However, approximately 9% of the samples that tested negative by the nested RT-PCR assay tested positive by the TaqMan assay. These results indicate that the developed TaqMan assay is a highly sensitive diagnostic test for rapid detection of TGEV in pig fecal samples.
Collapse
Affiliation(s)
- Ramesh Vemulapalli
- Molecular Diagnostics Section, Animal Disease Diagnostic Laboratory, Purdue University, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
28
|
Ward P, Poitras E, Leblanc D, Letellier A, Brassard J, Plante D, Houde A. Comparative analysis of different TaqMan real-time RT-PCR assays for the detection of swine Hepatitis E virus and integration of Feline calicivirus as internal control. J Appl Microbiol 2009; 106:1360-9. [PMID: 19187137 DOI: 10.1111/j.1365-2672.2008.04104.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to compare the performance of four TaqMan RT-PCR assays with a commonly used nested RT-PCR and to include the Feline calicivirus (FCV) as an internal control. METHODS AND RESULTS RNA extracted from 87 swine faecal samples and 103 swine blood samples was subjected to different detection systems. Faecal samples naturally contaminated with Hepatitis E virus (HEV) and negative samples were artificially inoculated with 3.2 x 10(3) PFU of FCV. Detection results obtained on faecal and plasma samples were 35.6% and 4.9% with the nested RT-PCR assay, 8.0% and 0%, 0% and 0%, 13.8% and 0% and 36.8% and 3.9% with TaqMan systems A, B, C and D respectively. The Ct means obtained with the multiplex TaqMan assay were 30.11 and 30.43 for the detection of FCV with HEV contaminated samples and negative samples. CONCLUSIONS The TaqMan system D was more suitable for the detection of swine HEV strains than the three others and FCV was integrated successfully as an internal control. SIGNIFICANCE AND IMPACT OF THE STUDY FCV was demonstrated as an efficient control to monitor the RNA extraction process and HEV amplification procedure in a multiplex HEV/FCV TaqMan assay. This control would be helpful in limiting false negative results.
Collapse
Affiliation(s)
- P Ward
- Agriculture and Agri-Food Canada, Food Research and Development Centre, St-Hyacinthe, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
29
|
Mauroy A, Scipioni A, Mathijs E, Saegerman C, Mast J, Bridger JC, Ziant D, Thys C, Thiry E. Epidemiological study of bovine norovirus infection by RT-PCR and a VLP-based antibody ELISA. Vet Microbiol 2009; 137:243-51. [PMID: 19232845 PMCID: PMC7117358 DOI: 10.1016/j.vetmic.2009.01.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 01/16/2009] [Accepted: 01/21/2009] [Indexed: 01/10/2023]
Abstract
Noroviruses, belonging to the family Caliciviridae, have been identified in human beings and in several animal species including cattle. The distribution of bovine norovirus infections was investigated by both RT-PCR to detect norovirus genomes and a virus-like particles-based ELISA to detect genotype 2 bovine norovirus antibodies. During a 1-year systematic study, a virus prevalence of 7.5% (CI 95%: [3.7; 13.4%]) (10 out of 133 samples) was found in stool samples from diarrhoeic calves screened by RT-PCR. Nucleotide sequencing performed on the polymerase region classified all the norovirus amplicons in the bovine norovirus genotype 2. Rather surprisingly, some rotavirus sequences were also detected. On the basis of the polymerase region, genotype 1 bovine norovirus was not identified. Other enteropathogens were found in all samples. By ELISA, a genotype 2 seroprevalence of 93.2% (CI 95%: [90.4; 95.3%]) was found from calves and adult cattle. Antibody levels against genotype 2 bovine noroviruses rose in the first 6 months of life and were maintained in adults. Together the results of virus prevalence and seroprevalence studies suggest that bovine norovirus infection occurs early in life and that re-infection with serologically related bovine noroviruses strains could occur in adult cattle as reported for rotaviruses. The antibody rise against genotype 2 bovine noroviruses in the adult cattle also suggests a short lived and/or strain specific immunity as already shown in human noroviruses. Genotype 2 bovine noroviruses are endemic in the region investigated.
Collapse
Affiliation(s)
- Axel Mauroy
- Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Scipioni A, Mauroy A, Ziant D, Saegerman C, Thiry E. A SYBR Green RT-PCR assay in single tube to detect human and bovine noroviruses and control for inhibition. Virol J 2008; 5:94. [PMID: 18702817 PMCID: PMC2546391 DOI: 10.1186/1743-422x-5-94] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 08/14/2008] [Indexed: 12/02/2022] Open
Abstract
Background Noroviruses are single-stranded RNA viruses belonging to the family Caliciviridae. They are a major cause of epidemic and sporadic gastroenteritis in humans and clinical signs and lesions of gastroenteritis were reported in bovines. Due to their genetic proximity, potential zoonotic transmission or animal reservoir can be hypothesized for noroviruses. RT-PCR has become the "gold standard" for the detection of noroviruses in faecal and environmental samples. With such samples, the control for inhibition of the reaction during amplification and detection is crucial to avoid false negative results, which might otherwise not be detected. The aim of the reported method is to detect, with a SYBR Green technology, a broad range of noroviruses with a control for inhibition. Results A SYBR Green real-time RT-PCR assay was developed making use of a foreign internal RNA control added in the same tube. This assay is able to detect human and bovine noroviruses belonging to genogroups I, II and III and to distinguish between norovirus and internal control amplicons using melting curve analysis. A 10-fold dilution of samples appears to be the method of choice to remove inhibition. This assay was validated with human and bovine stool samples previously tested for norovirus by conventional RT-PCR. Conclusion This SYBR Green real-time RT-PCR assay allows the detection of the most important human and bovine noroviruses in the same assay, and avoids false negative results making use of an internal control. Melting curves allow the discrimination between the internal control and norovirus amplicons. It gives preliminary information about the species of origin. The sensitivity of the developed assay is higher than conventional RT-PCR and a 10-fold dilution of samples showed a better efficiency and reproducibility to remove RT-PCR inhibition than addition of bovine serum albumin.
Collapse
Affiliation(s)
- Alexandra Scipioni
- Department of Infectious and Parasitic Diseases, Virology, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium.
| | | | | | | | | |
Collapse
|