1
|
Taban BM, Numanoglu Cevik Y. The efficiency of MALDI-TOF MS method in detecting Staphylococcus aureus isolated from raw milk and artisanal dairy foods. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1977392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Birce Mercanoglu Taban
- Dairy Technology Department, Faculty of Agriculture, Veterinary and Agriculture Campus, Ankara University, Diskapi, Ankara, Turkey
| | - Yasemin Numanoglu Cevik
- Microbiology and Reference Laboratory and Biological Products Department, General Directorate of Public Health, Ministry of Health, Ankara, Turkey
| |
Collapse
|
2
|
Integration of transcriptomics, proteomics and metabolomics data to reveal the biological mechanisms of abrin injury in human lung epithelial cells. Toxicol Lett 2019; 312:1-10. [PMID: 31054353 DOI: 10.1016/j.toxlet.2019.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Abrin toxin (AT) is a potent plant toxin that belongs to the type Ⅱ ribosome inactivating protein family and is recognized as an important toxin agent for potential bioweapons. Exposure to AT by way of aerosol is the most lethal route, but the mechanism of injury requires further investigation. MATERIALS AND METHODS In the present study, we performed a comprehensive analysis of transcriptomics, proteomics and metabolomics on the potential mechanism of abrin injury in human lung epithelial cells. RESULTS In total, 6838 genes, 314 proteins and 178 metabolites showed significant changes in human lung epithelial cells after AT treatment. Using molecular function, pathway, and network analysis, the genes and proteins regulated in AT-treated cells were mainly attributed to amino acid metabolism, lipid metabolism, and genetic information processing. Furthermore, a comprehensive analysis of the transcripts, proteins, and metabolites was performed. The results revealed that the correlated genes, proteins, and metabolism pathways regulated in AT-treated human lung epithelial cells were involved in tryptophan metabolism, biosynthesis of amino acids, and protein digestion and absorption. CONCLUSION This study provides large-scale omics data to develop new strategies for the prevention, rapid diagnosis, and treatment of AT poisoning, especially AT from aerosol.
Collapse
|
3
|
Kim J, Hong J, Lim JA, Heu S, Roh E. Improved multiplex PCR primers for rapid identification of coagulase-negative staphylococci. Arch Microbiol 2017; 200:73-83. [PMID: 28795230 PMCID: PMC5758691 DOI: 10.1007/s00203-017-1415-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 11/04/2022]
Abstract
Coagulase-negative staphylococci (CNS) are opportunistic pathogens that are currently emerging as causative agents of human disease. Though CNS are widespread in the clinic and food, their precise identification at species level is important. Here, using 16S rRNA sequencing, 55 staphylococcal isolates were identified as S. capitis, S. caprae, S. epidermidis, S. haemolyticus, S. pasteuri, S. saprophyticus, S. warneri, and S. xylosus. Although 16S rRNA sequencing is universally accepted as a standard for bacterial identification, the method did not effectively discriminate closely related species, and additional DNA sequencing was required. The divergence of the sodA gene sequence is higher than that of 16S rRNA. To devise a rapid and accurate identification method, sodA-specific primers were designed to demonstrate that species-specific multiplex polymerase chain reaction (PCR) can be used for the identification of CNS species. The accuracy of this method was higher than that of phenotypic identification; the method is simple and less time-consuming than 16S rRNA sequencing. Of the 55 CNS isolates, 92.72% were resistant to at least one antibiotic, and 60% were resistant to three or more antibiotics. CNS isolates produced diverse virulence-associated enzymes, including hemolysin (produced by 69.09% of the isolates), protease (65.45%), lipase (54.54%), lecithinase (36.36%), and DNase (29.09%); all isolates could form a biofilm. Because of the increasing pathogenic significance of CNS, the efficient multiplex PCR detection method developed in this study may contribute to studies for human health.
Collapse
Affiliation(s)
- Jonguk Kim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jisoo Hong
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Jeong-A Lim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon, 16613, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
4
|
Abstract
Medical diagnostics and treatment has advanced from a one size fits all science to treatment of the patient as a unique individual. Currently, this is limited solely to genetic analysis. However, epigenetic, transcriptional, proteomic, posttranslational modifications, metabolic, and environmental factors influence a patient’s response to disease and treatment. As more analytical and diagnostic techniques are incorporated into medical practice, the personalized medicine initiative transitions to precision medicine giving a holistic view of the patient’s condition. The high accuracy and sensitivity of mass spectrometric analysis of proteomes is well suited for the incorporation of proteomics into precision medicine. This review begins with an overview of the advance to precision medicine and the current state of the art in technology and instrumentation for mass spectrometry analysis. Thereafter, it focuses on the benefits and potential uses for personalized proteomic analysis in the diagnostic and treatment of individual patients. In conclusion, it calls for a synthesis between basic science and clinical researchers with practicing clinicians to design proteomic studies to generate meaningful and applicable translational medicine. As clinical proteomics is just beginning to come out of its infancy, this overview is provided for the new initiate.
Collapse
|
5
|
Cheng K, Chui H, Domish L, Hernandez D, Wang G. Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 2016; 10:346-57. [PMID: 26751976 PMCID: PMC5067657 DOI: 10.1002/prca.201500086] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022]
Abstract
Identification and typing of bacteria occupy a large fraction of time and work in clinical microbiology laboratories. With the certification of some MS platforms in recent years, more applications and tests of MS‐based diagnosis methods for bacteria identification and typing have been created, not only on well‐accepted MALDI‐TOF‐MS‐based fingerprint matches, but also on solving the insufficiencies of MALDI‐TOF‐MS‐based platforms and advancing the technology to areas such as targeted MS identification and typing of bacteria, bacterial toxin identification, antibiotics susceptibility/resistance tests, and MS‐based diagnostic method development on unique bacteria such as Clostridium and Mycobacteria. This review summarizes the recent development in MS platforms and applications in bacteria identification and typing of common pathogenic bacteria.
Collapse
Affiliation(s)
- Keding Cheng
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Huixia Chui
- Henan Centre of Disease Control and Prevention, Henan Province, P. R. China
| | - Larissa Domish
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Drexler Hernandez
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Gehua Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
6
|
Kleinschmidt S, Huygens F, Faoagali J, Rathnayake IU, Hafner LM. Staphylococcus epidermidis as a cause of bacteremia. Future Microbiol 2015; 10:1859-79. [DOI: 10.2217/fmb.15.98] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Staphylococcus epidermidis is a biofilm-producing commensal organism found ubiquitously on human skin and mucous membranes, as well as on animals and in the environment. Biofilm formation enables this organism to evade the host immune system. Colonization of percutaneous devices or implanted medical devices allows bacteria access to the bloodstream. Isolation of this organism from blood cultures may represent either contamination during the blood collection procedure or true bacteremia. S. epidermidis bloodstream infections may be indolent compared with other bacteria. Isolation of S. epidermidis from a blood culture may present a management quandary for clinicians. Over-treatment may lead to patient harm and increases in healthcare costs. There are numerous reports indicating the difficulty of predicting clinical infection in patients with positive blood cultures with this organism. No reliable phenotypic or genotypic algorithms currently exist to predict the pathogenicity of a S. epidermidis bloodstream infection. This review will discuss the latest advances in identification methods, global population structure, pathogenicity, biofilm formation, antimicrobial resistance and clinical significance of the detection of S. epidermidis in blood cultures. Previous studies that have attempted to discriminate between invasive and contaminating strains of S. epidermidis in blood cultures will be analyzed.
Collapse
Affiliation(s)
- Sharon Kleinschmidt
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Microbiology Department, Pathology Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Flavia Huygens
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joan Faoagali
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| | - Louise M Hafner
- School of Biomedical Sciences, Institute of Health & Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Miller S, Karaoz U, Brodie E, Dunbar S. Solid and Suspension Microarrays for Microbial Diagnostics. METHODS IN MICROBIOLOGY 2015; 42:395-431. [PMID: 38620236 PMCID: PMC7172482 DOI: 10.1016/bs.mim.2015.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Advancements in molecular technologies have provided new platforms that are being increasingly adopted for use in the clinical microbiology laboratory. Among these, microarray methods are particularly well suited for diagnostics as they allow multiplexing, or the ability to test for multiple targets simultaneously from the same specimen. Microarray technologies commonly used for the detection and identification of microbial targets include solid-state microarrays, electronic microarrays and bead suspension microarrays. Microarray methods have been applied to microbial detection, genotyping and antimicrobial resistance gene detection. Microarrays can offer a panel approach to diagnose specific patient presentations, such as respiratory or gastrointestinal infections, and can discriminate isolates by genotype for tracking epidemiology and outbreak investigations. And, as more information has become available on specific genes and pathways involved in antimicrobial resistance, we are beginning to be able to predict susceptibility patterns based on sequence detection for particular organisms. With further advances in automated microarray processing methods and genotype-phenotype prediction algorithms, these tests will become even more useful as an adjunct or replacement for conventional antimicrobial susceptibility testing, allowing for more rapid selection of targeted therapy for infectious diseases.
Collapse
Affiliation(s)
- Steve Miller
- Clinical Microbiology Laboratory, University of California, San Francisco, California, USA
| | - Ulas Karaoz
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Eoin Brodie
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | |
Collapse
|
8
|
Kooken J, Fox K, Fox A, Wunschel D. Reprint of "Assessment of marker proteins identified in whole cell extracts for bacterial speciation using liquid chromatography electrospray ionization tandem mass spectrometry". Mol Cell Probes 2014; 28:58-64. [PMID: 24486519 DOI: 10.1016/j.mcp.2014.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/25/2022]
Abstract
Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Karen Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - Alvin Fox
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | - David Wunschel
- Chemical and Biological Signature Sciences, Pacific Northwest National Laboratory, PO Box 999 MS P7-50, Richland, WA 99354, USA.
| |
Collapse
|
9
|
Kooken J, Fox K, Fox A, Wunschel D. Assessment of marker proteins identified in whole cell extracts for bacterial speciation using liquid chromatography electrospray ionization tandem mass spectrometry. Mol Cell Probes 2013; 28:34-40. [PMID: 23994725 DOI: 10.1016/j.mcp.2013.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
Abstract
Staphylococcal strains (CoNS) were speciated in this study. Digests of proteins released from whole cells were converted to tryptic peptides for analysis. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS, Orbitrap) was employed for peptide analysis. Data analysis was performed employing the open-source software X!Tandem which uses sequenced genomes to generate a virtual peptide database for comparison to experimental data. The search database was modified to include the genomes of the 11 Staphylococcus species most commonly isolated from man. The number of total peptides matching each protein along with the number of peptides specifically matching to the homologue (or homologues) for strains of the same species were assessed. Any peptides not matching to the species examined were considered conflict peptides. The proteins typically identified with the largest percentage of sequence coverage, number of matched peptides and number of peptides corresponding to only the correct species were elongation factor Tu (EF Tu) and enolase (Enol). Additional proteins with consistently observed peptides as well as peptides matching only homologues from the same species were citrate synthase (CS) and 1-pyrroline-5-carboxylate dehydrogenase (1P5CD). Protein markers, previously identified from gel slices, (aconitate hydratase and oxoglutarate dehydrogenase) were found to provide low confidence scores when employing whole cell digests. The methodological approach described here provides a simple yet elegant way of identification of staphylococci. However, perhaps more importantly the technology should be applicable universally for identification of any bacterial species.
Collapse
Affiliation(s)
- Jennifer Kooken
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|