1
|
Cao L, Ma J, Chen P, Hou X, Yang N, Lu Y, Huang H. Exploring the influence of DNA methylation and single nucleotide polymorphisms of the Myostatin gene on growth traits in the hybrid grouper ( Epinephelus fuscoguttatus (female) × Epinephelus polyphekadion (male)). Front Genet 2024; 14:1277647. [PMID: 38259615 PMCID: PMC10801740 DOI: 10.3389/fgene.2023.1277647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Investigations into the correlation between growth characteristics and DNA methylation levels, along with genetic variations, can provide fundamental insights to enhance growth performance in groupers. The Myostatin (mstn) gene plays a vital role in regulating skeletal muscle development and growth. This study scrutinized the DNA methylation levels of the mstn gene across hybrid groupers (E. fuscoguttatus (♀) × E. polyphekadion (♂)) and their parental species, to evaluate its impact on growth attributes in grouper fish. The nucleotide sequence of the mstn gene was directly sequenced in the hybrid grouper, exhibiting different growth performance to identify the single nucleotide polymorphisms (SNPs) of the mstn gene and explore their correlation with growth characteristics. The findings revealed no significant differences in global DNA methylation levels within muscle tissue among the hybrid grouper and parents. However, significant differences in DNA methylation sites were discovered between the hybrid grouper and E. polyphekadion at sites 824 and 1521 (located at exon 2 and intron 2, respectively), and between E. fuscoguttatus and E. polyphekadion at site 1521. These variations could potentially influence the mRNA expression of the mstn gene. The study also identified that SNP g.1003 T > C in exon 2 of the mstn gene was significantly associated with various growth traits including body weight, total length, body length, head length, caudal peduncle height, and body height (p < 0.01). Specimens with the TT genotype at site 1003 demonstrated superior growth performance compared to those with the TC genotype. Furthermore, microstructural analyses of muscle tissue showed that the average area and diameter of muscle fibers in TT genotype individuals were significantly greater than those in TC genotype individuals. Therefore, this research provides robust evidence linking the DNA methylation level and polymorphisms of the mstn gene with growth traits, which could be beneficial for grouper breeding programs.
Collapse
Affiliation(s)
- Liu Cao
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Jun Ma
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Pan Chen
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Xingrong Hou
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Ning Yang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Yan Lu
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| | - Hai Huang
- Yazhou Bay Innovation Institute, Sanya, China
- Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Sanya, China
- Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education, Sanya, China
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, China
| |
Collapse
|
2
|
Özcan Gökçek E, Işık R, Karahan B, Gamsız K. Characterisation of Single Nucleotide Polymorphisms and Haplotypes of MSTN Associated with Growth Traits in European Sea Bass (Dicentrarchus labrax). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:347-357. [PMID: 37162623 DOI: 10.1007/s10126-023-10211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/24/2023] [Indexed: 05/11/2023]
Abstract
The myostatin (MSTN) gene, known as growth differentiation factor-8 (GDF-8), is a member of the transforming growth factor-β (TGF-β) superfamily and plays a specific inhibitory role during the critical phases of skeletal muscle mass development in vertebrates. This study was conducted to investigate MSTN polymorphisms in harvest size European sea bass reared in Turkey. Nine single nucleotide polymorphisms (SNPs) and two indels were identified in exons 1-3 of MSTN in the European sea bass population The associations between the g.16612A indel located in intron 1 and standard length were significant. The MSTN g.15252 T > A locus in intron 2 was significantly related to the total weight, fillet weight and standard length (P < 0.05). The relationship between the g.14873C > T locus in exon 3 of MSTN and standard height, head length, body length, pre-anal length, abdominal length, post-anal length and head width was significant (P < 0.05). According to the results of the haplotype analysis, two haplogroup and eight haplotype combinations were detected in the population. The haplogroup 2 had significant associations with all measured growth traits (P < 0.05). Thus, SNPs and haplotypes identified in this study could be useful for European sea bass breeding and marker-assisted selection.
Collapse
Affiliation(s)
- Emel Özcan Gökçek
- Faculty of Fisheries, Department of Aquaculture, Ege University, İzmir, 35100, Türkiye.
| | - Raziye Işık
- Faculty of Agriculture, Department of Agricultural Biotechnology, Tekirdağ Namık Kemal University, Tekirdağ, 59030, Türkiye
| | - Bilge Karahan
- Faculty of Fisheries, Department of Aquaculture, Ege University, İzmir, 35100, Türkiye
| | - Kutsal Gamsız
- Faculty of Fisheries, Department of Aquaculture, Ege University, İzmir, 35100, Türkiye
| |
Collapse
|
3
|
Zhou Z, Wang M, Yang J, Liu B, Li L, Shi Y, Pu F, Xu P. Genome-wide association analysis reveals genetic variations and candidate genes associated with growth-related traits and condition factor in Takifugu bimaculatus. REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
4
|
Xiong Y, Zheng X, Ke W, Gong G, Wang Y, Dan C, Huang P, Wu J, Guo W, Mei J. Function and association analysis of Cyclophilin A gene with resistance to Edwardsiella ictaluri in yellow catfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 113:103783. [PMID: 32735962 DOI: 10.1016/j.dci.2020.103783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/08/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Edwardsiella ictaluri (E. ictaluri) is one of the main bacterial pathogens in catfish which has caused serious economic loss to yellow catfish (Pelteobagrus fulvidraco) in China. In our previous work, we demonstrated that CypA was up-regulated at the early stage of E. ictaluri infection in yellow catfish and displayed strong chemotactic activity for leukocytes in vitro. However, the effect of CypA on E. ictaluri is unknown in vivo. Therefore, two homozygous transgenic zebrafish lines expressing yellow catfish CypA (TG-CypA-1 and TG-CypA-2) were generated. After challenged with E. ictaluri at a dose of 1.0 × 104 CFU per adult fish, both two transgenic lines exhibited a higher resistance to bacterial infection than the wildtype zebrafish. Herein, CypA gene in E. ictaluri-challenged yellow catfish was screened for presence of polymorphisms by sequencing and six single nucleotide polymorphisms (SNPs) were identified. SNP association analysis revealed that 528T/C SNP in the first intron was significantly different in disease-susceptible and -resistant groups, which was confirmed in two independent populations of yellow catfish. Moreover, the relative expression of CypA in the resistant group (CC genotype in 528T/C SNP) was significantly higher than that in the susceptible group (TT genotype in 528T/C SNP) in different immune organs of yellow catfish including spleen, head kidney, body kidney and liver. Our results reveal the potential function of CypA in host defense to bacterial infection and suggest the SNP marker in CypA gene associated with the resistance to E. ictaluri may facilitate the selective breeding of disease-resistant yellow catfish in the future.
Collapse
Affiliation(s)
- Yang Xiong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaozhen Zheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wensi Ke
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuhong Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Peipei Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiankai Wu
- Kangyu Fisheries Technology Co. Ltd. of Sheyang County, Sheyang, 224300, China
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Yang Y, Wu L, Wu X, Li B, Huang W, Weng Z, Lin Z, Song L, Guo Y, Meng Z, Liu X, Xia J. Identification of Candidate Growth-Related SNPs and Genes Using GWAS in Brown-Marbled Grouper (Epinephelus fuscoguttatus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:153-166. [PMID: 31927644 DOI: 10.1007/s10126-019-09940-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Brown-marbled grouper, Epinephelus fuscoguttatus, is not only an important commercial fish species, but also an important crossbreeding parent in grouper industry. Improvement of growth traits of this species contributes to the development of grouper breeding. Currently, the development of molecular marker associated with growth of brown-marbled grouper is rare. Thus, we performed the first genome-wide association study (GWAS) for five growth traits in 172 brown-marbled groupers with 43,688 SNPs detected by ddRAD-seq. We identified a total of 5 significant and 18 suggestive QTLs located in multiple chromosomes associated with growth traits. In the 20 kb window of the significant SNPs and suggestive SNPs, 5 and 14 potential candidate genes affecting growth were detected, respectively. Five potential candidate genes near the significantly associated SNPs were selected for expression analysis. Among of which, bmp2k, wasf1, and acyp2 involved in bone development, maintenance of mitochondrion structure, and metabolism were differentially expressed. Interestingly, the SNP 23:29601315 located in the intron of bmp2k was significantly associated with body weight, body length, body height, and body thickness and suggestively associated with total length. We verified the locus using another new group including 123 individuals. The results showed that individuals with CC genotype have better growth traits comparing other individuals. Our findings not only contribute to understanding the molecular mechanism of growth regulation, but also promote the advance of marker-assisted selection in brown-marbled grouper.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Bijun Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Wenhua Huang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zhuoying Weng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zixuan Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Leling Song
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China.
- Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Guangzhou, 510275, People's Republic of China.
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Science School, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
- Southern Laboratory of Ocean Science and Engineering, Zhuhai, 519000, People's Republic of China
| |
Collapse
|
6
|
Molecular characterization, expression analysis of the myostatin gene and its association with growth traits in sea cucumber (Apostichopus japonicus). Comp Biochem Physiol B Biochem Mol Biol 2016; 201:12-20. [DOI: 10.1016/j.cbpb.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 05/28/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
|
7
|
Si Y, He F, Wen H, Li J, Zhao J, Ren Y, Zhao M, Ji L, Huang Z, Zhang M, Chen S. Genetic polymorphisms and DNA methylation in exon 1 CpG-rich regions of PACAP gene and its effect on mRNA expression and growth traits in half smooth tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:407-421. [PMID: 26494141 DOI: 10.1007/s10695-015-0147-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 10/16/2015] [Indexed: 06/05/2023]
Abstract
The pituitary adenylate cyclase activating polypeptide (PACAP) is a new type of hypophysiotropic hormone and plays an important role in regulating the synthesis and secretion of growth hormone and gonadotropin. The research on the relationship between PACAP and different growth traits would contribute to explain its function during the process of growth. Moreover, epigenetic modifications, especially DNA methylation at the CpG sites of the SNPs, play important roles in regulating gene expression. The results suggest that a SNP mutation (c.C151G) in the PACAP gene of male half smooth tongue sole (Cynoglossus semilaevis) is significantly associated with growth traits and serum physiological and biochemical parameters such as inorganic phosphorus (P < 0.05). The SNP is located in a CpG-rich region of exon 1. Intriguingly, the transition (C→G) added a new methylation site of PACAP gene. This SNP was also significantly related to the expression and methylation level of PACAP (P < 0.05). Individuals with GG genotype had faster growth rates than those of CG and CC genotypes. Moreover, GG genotype had significantly higher PACAP expression level and lower methylation level than CG and CC genotypes. In the serum indexes, only inorganic phosphorus content within GG genotypes was significantly higher than CC genotypes. This implied that the mutation and methylation status of PACAP gene could influence growth traits and this locus could be considered as a candidate genetic or epigenetic marker for Cynoglossus semilaevis molecular breeding.
Collapse
Affiliation(s)
- Yufeng Si
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Feng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
- Fisheries College, Ocean University of China, Qingdao, China.
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Jifang Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Junli Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Yuanyuan Ren
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Meilin Zhao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Liqin Ji
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Zhengju Huang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Mo Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
8
|
Identification and expression characterization of the myostatin (MSTN) gene and association analysis with growth traits in the razor clam Sinonovacula constricta. Gene 2015; 555:297-304. [DOI: 10.1016/j.gene.2014.11.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 02/02/2023]
|