1
|
Rymuza J, Długosz A, Zalewski K, Kowalik A, Bujko M, Kowalewska M. Circulating MicroRNAs in Patients with Vulvar Squamous Cell Carcinoma and Its Precursors. Noncoding RNA 2025; 11:13. [PMID: 39997613 PMCID: PMC11858568 DOI: 10.3390/ncrna11010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Objectives: Vulvar squamous cell carcinoma (VSCC) is a rare gynecologic malignancy, with most cases arising from differentiated vulvar intraepithelial neoplasia (dVIN). Approximately one-third of VSCC cases originate from high-grade squamous intraepithelial lesions (HSILs), which are associated with persistent infection by varieties of high-risk human papillomavirus (hrHPV). This study aimed to quantify the circulating microRNAs (miRNAs) in the plasma of patients with premalignant conditions (dVIN and HSILs) and VSCC using TaqMan Low-Density Arrays. Methods: Plasma samples were collected from 40 patients, including those treated for HSILs, dVIN, and VSCC. Quantitative real-time PCR (qRT-PCR) identified the circulating miRNAs differentially expressed in the plasma of VSCC patients compared to patients with precancerous lesions. Results: A total of 31 differentially expressed miRNAs (DEMs) were found to be significantly upregulated in plasma from VSCC patients compared to precancerous cases. None of the analyzed miRNAs were able to distinguish VSCC cases based on hrHPV tumor status. Conclusions: This study provides strong evidence that a distinct set of miRNAs can differentiate between plasma samples from VSCC patients and those with precancerous lesions. Thus, these DEMs have potential diagnostic and prognostic value. "Predisposing" DEMs could be developed as biomarkers to aid in the assessment of vulvar lesions, helping to exclude or confirm progression toward cancer.
Collapse
Affiliation(s)
- Julia Rymuza
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.R.); (K.Z.); (M.B.)
| | - Angelika Długosz
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Kamil Zalewski
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.R.); (K.Z.); (M.B.)
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, 25-734 Kielce, Poland;
- Department of Genetic Engineering, Holy Cross Cancer Centre, 25-734 Kielce, Poland
- Division of Medical Biology, IB, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.R.); (K.Z.); (M.B.)
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (J.R.); (K.Z.); (M.B.)
| |
Collapse
|
2
|
Lee Y, Lee SW, Jeong D, Lee HJ, Ko K. The role of microRNA-325-3p as a critical player in cell death in NSCs and astrocytes. Front Cell Dev Biol 2024; 11:1223987. [PMID: 38379959 PMCID: PMC10877600 DOI: 10.3389/fcell.2023.1223987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/12/2023] [Indexed: 02/22/2024] Open
Abstract
Neural stem cells (NSCs) are defined by their ability to self-renew and generate various cell types within the nervous system. Understanding the underlying mechanism by which NSCs proliferate and differentiate is crucial for the efficient modulation of in vivo neurogenesis. MicroRNAs are small non-coding RNAs controlling gene expression concerned in post-transcriptional control by blocking messenger RNA (mRNA) translation or degrading mRNA. MicroRNAs play a role as modulators by matching target mRNAs. Recent studies have discussed the biological mechanism of microRNA regulation in neurogenesis. To investigate the role of microRNAs in NSCs and NSC-derived glial cells, we screened out NSC-specific microRNAs by using miRNome-wide screening. Then, we induced downregulation by the sponge against the specific microRNA to evaluate the functional role of the microRNA in proliferation, differentiation, and apoptosis in NSCs and NSC-derived astrocytes. We found that microRNA-325-3p is highly expressed in NSCs and astrocytes. Furthermore, we showed that microRNA-325-3p is a regulator of apoptosis by targeting brain-specific angiogenesis inhibitor (BAI1), which is a receptor for apoptotic cells and expressed in the brain and cultured astrocytes. Downregulation of microRNA-325-3p using an inducible sponge system induced cell death by regulating BAI1 in NSCs and NSC-derived astrocytes. Overall, our findings can provide an insight into the potential roles of NSC-specific microRNAs in brain neurogenesis and suggest the possible usage of the microRNAs as biomarkers of neurodegenerative disease.
Collapse
Affiliation(s)
- Yukyeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Seung-Won Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Dahee Jeong
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hye Jeong Lee
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kinarm Ko
- Department of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Republic of Korea
- Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
3
|
The miR-17-92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun 2022; 33:100647. [PMID: 36327576 DOI: 10.1016/j.ctarc.2022.100647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/27/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs which modulate gene expression via multiple post-transcriptional mechanisms. They are involved in a variety of biological processes, including cell proliferation, metastasis, metabolism, tumorigenesis, and apoptosis. Dysregulation of miRNA expression has been implicated in human cancers, and they may also serve as biomarkers of disease progression and prognosis. The miR-17-92 cluster is one of the most widely studied miRNA clusters, which was initially reported as an oncogene, but was later reported to exhibit tumour suppressive effects in some human cancers. This review summarizes the recent progress and context-dependant role of this cluster in various cancers. We summarize the known mechanisms which regulate miR-17-92 expression and molecular pathways that are in turn controlled by it. We discuss examples where it acts as an oncogene or a tumour suppressor along with key targets affecting hallmarks of cancer. We discuss how cellular contexts regulate the biological effects of miR-17-92. The plausible mechanisms of its paradoxical roles are explained, and mechanisms are described that may contribute to cell fate regulation by miR-17-92. Further, we discuss recently developed strategies to target miR-17-92 cluster in human cancers. MiR-17-92 may serve as a potential biomarker for prognosis and response to therapy as well as a target for cancer prevention and therapeutics.
Collapse
|
4
|
Fariha A, Hami I, Tonmoy MIQ, Akter S, Al Reza H, Bahadur NM, Rahaman MM, Hossain MS. Cell cycle associated miRNAs as target and therapeutics in lung cancer treatment. Heliyon 2022; 8:e11081. [PMID: 36303933 PMCID: PMC9593298 DOI: 10.1016/j.heliyon.2022.e11081] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/17/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the primary cause of cancer related deaths worldwide. Limited therapeutic options and resistance to existing drugs are the major hindrances to the clinical success of this cancer. In the past decade, several studies showed the role of microRNA (miRNA) driven cell cycle regulation in lung cancer progression. Therefore, these small nucleotide molecules could be utilized as promising tools in lung cancer therapy. In this review, we highlighted the recent advancements in lung cancer therapy using cell cycle linked miRNAs. By highlighting the roles of the specific cell cycle core regulators affiliated miRNAs in lung cancer, we further outlined how these miRNAs can be explored in early diagnosis and treatment strategies to prevent lung cancer. With the provided information from our review, more medical efforts can ensure a potential breakthrough in miRNA-based lung cancer therapy.
Collapse
Affiliation(s)
- Atqiya Fariha
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Ithmam Hami
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Shahana Akter
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh,Corresponding author.
| | - Md Shahadat Hossain
- Department of Biotechnology & Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh,Corresponding author.
| |
Collapse
|
5
|
Bujko M, Zalewski K, Szczyrek M, Kowalik A, Boresowicz J, Długosz A, Goryca K, Góźdź S, Kowalewska M. Circulating Hsa-miR-431-5p as Potential Biomarker for Squamous Cell Vulvar Carcinoma and Its Premalignant Lesions. Diagnostics (Basel) 2021; 11:diagnostics11091706. [PMID: 34574047 PMCID: PMC8465739 DOI: 10.3390/diagnostics11091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Vulvar squamous cell carcinoma (VSCC) develops from high-grade squamous intraepithelial lesions (HSIL) and differentiated vulvar intraepithelial neoplasia (dVIN). This study aimed to assess the diagnostic value of circulating hsa-miR-431-5p in vulvar precancers and VSCC. Expression levels of hsa-miR-431-5p were analyzed by quantitative RT-PCR in plasma samples of 29 patients with vulvar precancers (HSIL or dVIN), 107 with VSCC as well as 15 healthy blood donors. We used hsa-miR-93-5p and hsa-miR-425-5p as normalizers. The levels of miR-431-5p were increased in the blood of patients with VSCC compared to those with vulvar precancers. Statistically significant differences in the survival rates (time to progression) were revealed for VSCC patients categorized by miR-431-5p levels. Low levels of circulating miR-431-5p were found to be indicative of unfavorable survival rates. In summary, our data reveal the diagnostic potential of circulating miR-431-5p in patients with vulvar precancers and VSCC.
Collapse
Affiliation(s)
- Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.B.); (K.Z.); (M.S.); (J.B.)
| | - Kamil Zalewski
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.B.); (K.Z.); (M.S.); (J.B.)
- Department of Gynecologic Oncology, Holycross Cancer Center, 25-734 Kielce, Poland
- Chair and Department of Obstetrics, Gynecology and Oncology, 2nd Faculty of Medicine, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Martyna Szczyrek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.B.); (K.Z.); (M.S.); (J.B.)
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holycross Cancer Centre, 25-734 Kielce, Poland;
- Division of Medical Biology, Institute of Biology Jan Kochanowski University, 25-406 Kielce, Poland
| | - Joanna Boresowicz
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.B.); (K.Z.); (M.S.); (J.B.)
| | - Angelika Długosz
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Stanisław Góźdź
- Department of Clinical Oncology, Holycross Cancer Centre, 25-734 Kielce, Poland;
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.B.); (K.Z.); (M.S.); (J.B.)
- Correspondence: ; Tel.: +48-22-546-26-50
| |
Collapse
|
6
|
Reply to Zhang and Zhu "MicroRNA Mimics or Inhibitors as Antiviral Therapeutic Approaches Against COVID-19". Drugs 2021; 81:1693-1695. [PMID: 34453691 PMCID: PMC8397847 DOI: 10.1007/s40265-021-01581-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/04/2022]
|
7
|
Liu M, Si Q, Ouyang S, Zhou Z, Wang M, Zhao C, Yang T, Wang Y, Zhang X, Xie W, Dai L, Li J. Serum MiR-4687-3p Has Potential for Diagnosis and Carcinogenesis in Non-small Cell Lung Cancer. Front Genet 2020; 11:597508. [PMID: 33329742 PMCID: PMC7721467 DOI: 10.3389/fgene.2020.597508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023] Open
Abstract
The lack of a useful biomarker partly contributes to the increased mortality of non-small cell lung cancer (NSCLC). MiRNAs have become increasingly appreciated in diagnosis of NSCLC. In the present study, we used microarray to screen 2,549 miRNAs in serum samples from the training cohort (NSCLC, n = 10; the healthy, n = 10) to discover differentially expressed miRNAs (DEMs). Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assay was applied to validate the expression level of selected overexpressed DEMs of NSCLC in a validation cohort (NSCLC, n = 30; the healthy, n = 30). Area under the receiver operating characteristic curve (AUC) was performed to evaluate diagnostic capability of the DEMs. The expression of the miRNAs in tissues was analyzed based on the TCGA database. Subsequently, the target genes of the miR-4687-3p were predicted by TargetScan. Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were tested by R software (ClusterProfiler package). NSCLC cells were transfected with inhibitor or mimic to down-regulate or up-regulate the miR-4687-3p level. The function of miR-4687-3p on proliferation, invasion, and migration of lung cancer cells were investigated through CCK-8 and Transwell assays, respectively. In the results, we identified serum miR-4687-3p that provided a high diagnostic accuracy of NSCLC (AUC = 0.679, 95%CI: 0.543-0.815) in the validation cohort. According to the TCGA database, we found that the miR-4687-3p level was significantly higher in NSCLC tissues than in normal lung tissues (p < 0.05). GO and KEGG pathway enrichment analysis showed that postsynaptic specialization and TGF-β signaling pathway were significantly enriched. Down-regulation of miR-4687-3p could suppress the proliferation, invasion, and migration of the NSCLC cells, compared with inhibitor negative control (NC). Meanwhile, overexpression of miR-4687-3p could promote the proliferation, invasion, and migration of the NSCLC cells compared with mimic NC. As a conclusion, our study first discovered that serum miR-4687-3p might have clinical potential as a non-invasive diagnostic biomarker for NSCLC and play an important role in the development of NSCLC.
Collapse
Affiliation(s)
- Man Liu
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Qiufang Si
- BGI College, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Songyun Ouyang
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Zhigang Zhou
- Department of Radiology, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Meng Wang
- Department of Radiology, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Chunling Zhao
- Department of Respiratory and Sleep Medicine, The First Affiliated Hospital in Zhengzhou University, Zhengzhou, China
| | - Ting Yang
- BGI College, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Yulin Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Wenbo Xie
- Department of Computer Science, College of Engineering, University of Texas at El Paso, El Paso, TX, United States
| | - Liping Dai
- Henan Institute of Medical and Pharmaceutical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Tumor Epidemiology & State Key Laboratory of Esophageal Cancer Prevention, Zhengzhou University, Zhengzhou, China
| | - Jitian Li
- Laboratory of Molecular Biology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| |
Collapse
|
8
|
Sethi S, Sethi S, Bluth MH. Clinical Implication of MicroRNAs in Molecular Pathology: An Update for 2018. Clin Lab Med 2019; 38:237-251. [PMID: 29776629 DOI: 10.1016/j.cll.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are poised to provide diagnostic, prognostic, and therapeutic targets for several diseases including malignancies for precision medicine applications. The miRNAs have immense potential in the clinical arena because they can be detected in the blood, serum, tissues (fresh and formalin-fixed paraffin-embedded), and fine-needle aspirate specimens. The most attractive feature of miRNA-based therapy is that a single miRNA could be useful for targeting multiple genes that are deregulated in cancers, which can be further investigated through systems biology and network analysis that may provide cancer-specific personalized therapy.
Collapse
Affiliation(s)
- Seema Sethi
- Department of Pathology, University of Michigan and VA Hospital, E300, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Sajiv Sethi
- Department of Gastroenterology, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 82, Tampa, FL 33612, USA
| | - Martin H Bluth
- Department of Pathology, Wayne State University, School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; Pathology Laboratories, Michigan Surgical Hospital, 21230 Dequindre Road, Warren, MI 48091, USA
| |
Collapse
|
9
|
Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology 2019; 71:411-425. [PMID: 30600466 DOI: 10.1007/s10616-018-0291-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/14/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are RNA molecules at about 22 nucleotide in length that are non-coding, which regulate gene expression in the post-transcriptional level by performing degradation or blocks translation of the target mRNA. It is known that they play roles in mechanisms such as metabolic regulation, embryogenesis, organogenesis, differentiation and growth control by providing post-transcriptional regulation of gene expression. With these properties, miRNAs play important roles in the regulation of biological processes such as proliferation, differentiation, apoptosis, drug resistance mechanisms in eukaryotic cells. In addition, there are miRNAs that can be used for cancer therapy. Tumor cells and tumor microenvironment have different miRNA expression profiles. Some miRNAs are known to play a role in the onset and progression of the tumor. miRNAs with oncogenic or tumor suppressive activity specific to different cancer types are still being investigated. This review summarizes the role of miRNAs in tumorigenesis, therapeutic strategies in human cancer and current studies.
Collapse
Affiliation(s)
- Gizem Ors-Kumoglu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.
| | - Sultan Gulce-Iz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Biomedical Technologies Graduate Programme, Institute of Natural and Applied Sciences, Ege University, Izmir, Turkey
| | - Cigir Biray-Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Santos JMO, Peixoto da Silva S, Costa NR, Gil da Costa RM, Medeiros R. The Role of MicroRNAs in the Metastatic Process of High-Risk HPV-Induced Cancers. Cancers (Basel) 2018; 10:cancers10120493. [PMID: 30563114 PMCID: PMC6316057 DOI: 10.3390/cancers10120493] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
High-risk human papillomavirus (HPV)-driven cancers represent a major health concern worldwide. Despite the constant effort to develop and promote vaccination against HPVs, there is still a high percentage of non-vaccinated population. Furthermore, secondary prevention programs are not ubiquitous worldwide and not widely followed. Metastatic disease is the cause of the great majority of cancer-associated deaths, making it essential to determine its underlying mechanisms and to identify actionable anti-metastatic targets. Within certain types of cancer (e.g., head and neck), HPV-positive tumors show different dissemination patterns when compared with their HPV-negative counterparts, implicating HPV-related factors in the metastatic process. Among the many groups of biomolecules dysregulated by HPV, microRNAs have recently emerged as key regulators of carcinogenesis, able to control complex processes like cancer metastization. In this review, we present recent data on the role of microRNAs in the metastization of HPV-related cancers and on their possible clinical relevance as biomarkers of metastatic disease and/or as therapeutic targets.
Collapse
Affiliation(s)
- Joana M O Santos
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
| | - Sara Peixoto da Silva
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
| | - Natália R Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5001-911 Vila Real, Portugal.
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal.
- Research Department of the Portuguese League Against Cancer⁻Regional Nucleus of the North (Liga Portuguesa Contra o Cancro⁻Núcleo Regional do Norte), 4200-177 Porto, Portugal.
- Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal.
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, 4249-004 Porto, Portugal.
| |
Collapse
|
11
|
Ren L, Zhao Y, Huo X, Wu X. MiR-155-5p promotes fibroblast cell proliferation and inhibits FOXO signaling pathway in vulvar lichen sclerosis by targeting FOXO3 and CDKN1B. Gene 2018; 653:43-50. [DOI: 10.1016/j.gene.2018.01.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/12/2018] [Indexed: 12/11/2022]
|
12
|
Yang XH, Guo F. miR‑3147 serves as an oncomiR in vulvar squamous cell cancer via Smad4 suppression. Mol Med Rep 2018; 17:6397-6404. [PMID: 29512734 PMCID: PMC5928616 DOI: 10.3892/mmr.2018.8697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
The incidence of vulvar squamous cell carcinoma (VSCC) has increased annually over the last decade. MicroRNAs (miRNAs/miRs) serve an important role in tumor progression and development. Our previous microarray studies have revealed that miR-3147 was overexpressed in VSCC. However, its function and underlying mechanism in VSCC remain unknown. In the present study, it was confirmed by reverse transcription-quantitative polymerase chain reaction that the expression of miR-3147 was markedly upregulated in VSCC tissues. The increased expression of miR-3147 was positively associated with the depth of invasion. The overexpression of miR-3147 resulted in the promotion of vulvar cancer cell proliferation, migration, invasion, G1/S progression and invasion-associated gene expression. miR-3147 may participate in the process of epithelial-mesenchymal transition and reduce the expressions of downstream target genes in the transforming growth factor-β/Smad signaling pathway in A431 cells. The knockdown of Smad4 by small interfering RNA promoted malignant behaviours in A431 cells. In addition, miR-3147 regulated Smad4 by directly binding to its 3′ untranslated region. In conclusion, the results indicated that miR-3147 may serve an oncogenic role in VSCC by targeting Smad4. miR-3147 may represent a novel potential therapeutic target marker for VSCC.
Collapse
Affiliation(s)
- Xiu-Hua Yang
- Department of Obstetrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Feng Guo
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
13
|
de Melo Maia B, Rodrigues IS, Akagi EM, Soares do Amaral N, Ling H, Monroig P, Soares FA, Calin GA, Rocha RM. MiR-223-5p works as an oncomiR in vulvar carcinoma by TP63 suppression. Oncotarget 2018; 7:49217-49231. [PMID: 27359057 PMCID: PMC5226502 DOI: 10.18632/oncotarget.10247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/08/2016] [Indexed: 01/21/2023] Open
Abstract
MiR-223-5p has been previously mentioned to be associated with tumor metastasis in HPV negative vulvar carcinomas, such as in several other tumor types. In the present study, we hypothesized that this microRNA would be important in vulvar cancer carcinogenesis and progression. To investigate this, we artificially mimicked miR-223-5p expression in a cell line derived from lymph node metastasis of vulvar carcinoma (SW962) and performed in vitro assays. As results, lower cell proliferation (p < 0.01) and migration (p < 0.001) were observed when miR-223-5p was overexpressed. In contrast, increased invasive potential of these cells was verified (p < 0.004). In silico search indicated that miR-223-5p targets TP63, member of the TP53 family of proteins, largely described with importance in vulvar cancer. We experimentally demonstrated that this microRNA is capable to decrease levels of p63 at both mRNA and protein levels (p < 0.001, and p < 0.0001; respectively). Also, a significant inverse correlation was observed between miR-223-5p and p63 expressions in tumors from patients (p = 0.0365). Furthermore, low p63 protein expression was correlated with deeper tumor invasion (p = 0.0491) and lower patient overall survival (p = 0.0494). Our study points out miR-223-5p overexpression as a putative pathological mechanism of tumor invasion and a promising therapeutic target and highlights the importance of both miR-223-5p and p63 as prognostic factors in vulvar cancer. Also, it is plausible that the evaluation of p63 expression in vulvar cancer at the biopsy level may bring important contribution on prognostic establishment and in elaborating better surgical approaches for vulvar cancer patients.
Collapse
Affiliation(s)
- Beatriz de Melo Maia
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil.,Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Iara Santana Rodrigues
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Erica Mie Akagi
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Nayra Soares do Amaral
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Paloma Monroig
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando Augusto Soares
- Molecular Morphology Laboratory, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA.,The Center for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Rafael Malagoli Rocha
- Gynecology Laboratory, Gynecologic Department Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Zalewski K, Misiek M, Kowalik A, Bakuła-Zalewska E, Kopczyński J, Zielińska A, Bidziński M, Radziszewski J, Góźdź S, Kowalewska M. Normalizers for microRNA quantification in plasma of patients with vulvar intraepithelial neoplasia lesions and vulvar carcinoma. Tumour Biol 2018; 39:1010428317717140. [DOI: 10.1177/1010428317717140] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of circulating microRNAs as a promising tool for diagnosing cancer and monitoring anticancer therapies has been widely studied in the past decades. To date, no suitable reference microRNAs for normalizing quantitative real-time polymerase chain reaction assays has been identified in vulvar intraepithelial neoplasia lesions and vulvar squamous cell carcinoma. The purpose of this study was to select appropriate references for gene expression studies in plasma of patients with these lesions. Expression levels of six microRNAs—hsa-miR-425-5p, hsa-miR-191-5p, hsa-miR-93-5p, hsa-miR-423-5p, hsa-miR-103a-3p, and hsa-miR-16-5p—were analyzed by quantitative reverse transcription polymerase chain reaction in plasma samples obtained from 17 patients with vulvar intraepithelial neoplasia lesion and 27 patients with vulvar squamous cell carcinoma. The expression stability of these candidate normalizers was assayed using geNorm algorithm. hsa-miR-93-5p was revealed as the most stably expressed reference in plasma samples of both vulvar intraepithelial neoplasia lesion and vulvar squamous cell carcinoma patients. The results pointed at hsa-miR-93-5p and hsa-miR-425-5p as microRNAs that retained the greatest robustness in plasma of vulvar intraepithelial neoplasia lesion and vulvar squamous cell carcinoma patients, respectively. Our work is the first report on reference microRNA selection for quantitative real-time polymerase chain reaction applications in vulvar intraepithelial neoplasia lesion and vulvar squamous cell carcinoma. The candidate microRNA stability values for the two types of lesions are provided and might serve for normalization of the future novel microRNA biomarkers in these rare entities.
Collapse
Affiliation(s)
- Kamil Zalewski
- Department of Gynecologic Oncology, Holycross Cancer Center, Kielce, Poland
- Department of Obstetrics, Gynecology and Oncology, 2nd Faculty of Medicine, Warsaw Medical University, Warsaw, Poland
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, Warsaw, Poland
| | - Marcin Misiek
- Department of Gynecologic Oncology, Holycross Cancer Center, Kielce, Poland
| | - Artur Kowalik
- Department Molecular Diagnostics, Holycross Cancer Center, Kielce, Poland
| | - Elwira Bakuła-Zalewska
- Department of Pathology, Maria Skłodowska-Curie Institute—Oncology Center, Warsaw, Poland
| | | | - Aleksandra Zielińska
- Department of Obstetrics, Gynecology and Oncology, 2nd Faculty of Medicine, Warsaw Medical University, Warsaw, Poland
| | - Mariusz Bidziński
- Faculty of Heath Sciences of the Jan Kochanowski University, Kielce, Poland
- Department of Gynecologic Oncology, Maria Skłodowska-Curie Institute—Oncology Center, Warsaw, Poland
| | - Jakub Radziszewski
- Faculty of Nature, University of Natural Sciences and Humanities, Siedlce, Poland
- Department of General Vascular and Oncological Surgery, Multidisciplinary Hospital Warsaw-Międzylesie, Poland
| | - Stanisław Góźdź
- Faculty of Heath Sciences of the Jan Kochanowski University, Kielce, Poland
- Department of Clinical Oncology, Holycross Cancer Center, Kielce, Poland
| | - Magdalena Kowalewska
- Department of Molecular and Translational Oncology, Maria Skłodowska-Curie Institute—Oncology Center, Warsaw, Poland
- Department of Immunology, Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy. Oncol Lett 2017; 15:2735-2742. [PMID: 29434998 DOI: 10.3892/ol.2017.7638] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 02/07/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNA molecule that performs an important role in post-transcriptional gene regulation. Since miRNAs were first identified in 1993, a number of studies have demonstrated that they act as tumor suppressors or oncogenes in human cancer, including colorectal, lung, brain, breast and liver cancer, and leukemia. Large high-throughput studies have previously revealed that miRNA profiling is critical for the diagnosis and prognosis of patients with cancer, while certain miRNAs possess the potential to be used as diagnostic and prognostic biomarkers or therapeutic targets in cancer. The present study reviews the studies and examines the roles of miRNAs in cancer diagnosis, prognosis and treatment, and discusses the potential therapeutic modality of exploiting miRNAs.
Collapse
Affiliation(s)
- Weige Tan
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 51000, P.R. China
| | - Bodu Liu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Shaohua Qu
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Gehao Liang
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wei Luo
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Chang Gong
- Breast Tumor Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
16
|
Abba ML, Patil N, Leupold JH, Moniuszko M, Utikal J, Niklinski J, Allgayer H. MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett 2017; 387:84-94. [DOI: 10.1016/j.canlet.2016.03.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/24/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023]
|
17
|
Blaya D, Coll M, Rodrigo-Torres D, Vila-Casadesús M, Altamirano J, Llopis M, Graupera I, Perea L, Aguilar-Bravo B, Díaz A, Banales JM, Clària J, Lozano JJ, Bataller R, Caballería J, Ginès P, Sancho-Bru P. Integrative microRNA profiling in alcoholic hepatitis reveals a role for microRNA-182 in liver injury and inflammation. Gut 2016; 65:1535-45. [PMID: 27196584 DOI: 10.1136/gutjnl-2015-311314] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are well-known regulators of disease pathogenesis and have great potential as biomarkers and therapeutic targets. We aimed at profiling miRNAs in alcoholic hepatitis (AH) and identifying miRNAs potentially involved in liver injury. DESIGN MiRNA profiling was performed in liver samples from patients with AH, alcohol liver disease, non-alcoholic steatohepatitis, HCV disease and normal liver tissue. Expression of miRNAs was assessed in liver and serum from patients with AH and animal models. Mimic and decoy miR-182 were used in vitro and in vivo to evaluate miR-182's biological functions. RESULTS MiRNA expression profile in liver was highly altered in AH and distinctive from alcohol-induced cirrhotic livers. Moreover, we identified a set of 18 miRNAs predominantly expressed in AH as compared with other chronic liver conditions. Integrative miRNA-mRNA functional analysis revealed the association of AH-altered miRNAs with nuclear receptors, IGF-1 signalling and cholestasis. Interestingly, miR-182 was the most highly expressed miRNA in AH, which correlated with degree of ductular reaction, disease severity and short-term mortality. MiR-182 mimic induced an upregulation of inflammatory mediators in biliary cells. At experimental level, miR-182 was increased in biliary cells in mice fed with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet but not upregulated by alcohol intake or fibrosis. Inhibition of miR-182 in DDC-fed mice reduced liver damage, bile acid accumulation and inflammatory response. CONCLUSIONS AH is characterised by a deregulated miRNA profile, including miR-182, which is associated with disease severity and liver injury. These results highlight the potential of miRNAs as therapeutic targets and biomarkers in AH.
Collapse
Affiliation(s)
- Delia Blaya
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Mar Coll
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Daniel Rodrigo-Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Maria Vila-Casadesús
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - José Altamirano
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marta Llopis
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Isabel Graupera
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Luis Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Beatriz Aguilar-Bravo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Alba Díaz
- Department of Pathology, Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Jesus M Banales
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute-Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain
| | - Joan Clària
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Department of Biochemistry and Molecular Genetics, Hospital Clínic and Department of Physiological Sciences I, University of Barcelona, Barcelona, Spain
| | - Juan José Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Ramon Bataller
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Division of Gastroenterology and Hepatology, Departments of Medicine and Nutrition, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Juan Caballería
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pere Ginès
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain Liver Unit, Hospital Clínic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Pau Sancho-Bru
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| |
Collapse
|
18
|
Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: Νew trends in the development of miRNA therapeutic strategies in oncology (Review). Int J Oncol 2016; 49:5-32. [PMID: 27175518 PMCID: PMC4902075 DOI: 10.3892/ijo.2016.3503] [Citation(s) in RCA: 181] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects.
Collapse
|