1
|
Pilotto A, Carini M, Bresciani R, Monti E, Ferrari F, De Francesco MA, Padovani A, Biasiotto G. Next Generation Sequencing Analysis in Patients Affected by Parkinson's Disease and Correlation Between Genotype and Phenotype in Selected Clinical Cases. Int J Mol Sci 2025; 26:2397. [PMID: 40141040 PMCID: PMC11942189 DOI: 10.3390/ijms26062397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/24/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Parkinson's Disease (PD) is the most frequent movement disorder and is second only to Alzheimer's Disease as the most frequent neurodegenerative pathology. Early onset Parkinson's disease (EOPD) is less common and may be characterized by genetic predisposition. NGS testing might be useful in the diagnostic assessment of these patients. A panel of eight genes (SNCA, PRKN, PINK1, DJ1, LRRK2, FBXO7, GBA1 and HFE) was validated and used as a diagnostic tool. A total of 38 in sequence EOPD patients of the Parkinson's Disease Unit of our Hospital Institution were tested. In addition, the number of the hexanucleotide repeats of the C9ORF72 gene and the frequency of main HFE mutations were evaluated. Six patients were carriers of likely pathogenic mutations in heterozygosity in the analyzed genes, one of them presented mutations in association and another had a complex genetic background. Their clinical symptoms were correlated with their genotypes. In the cohort of patients, only the p.Cys282Tyr of HFE was significantly decreased in the dominant model and allele contrast comparison. Only one patient with one allele of C9ORF72 containing 10 repeats was identified and clinically described. The clinical signs of sporadic and monogenic PD are often very similar; for this reason, it is fundamental to correlate genotypes and phenotypes, as we tried to describe here, to better classify PD patients with the aim to deepen our knowledge in the molecular mechanisms involved and collaborate in reaching a personalized management and treatment.
Collapse
Affiliation(s)
- Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, 25123 Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, 25123 Brescia, Italy
| | - Mattia Carini
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Fabiana Ferrari
- Pediatrics, Mother’s and Baby’s Health Department, Poliambulanza Foundation Hospital Institute, 25124 Brescia, Italy
| | - Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Neurology Unit, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia University Hospital, 25123 Brescia, Italy
- Laboratory of Digital Neurology and Biosensors, University of Brescia, 25123 Brescia, Italy
- Brain Health Center, University of Brescia, 25123 Brescia, Italy
| | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili of Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Gao C, Shi Q, Pan X, Chen J, Zhang Y, Lang J, Wen S, Liu X, Cheng TL, Lei K. Neuromuscular organoids model spinal neuromuscular pathologies in C9orf72 amyotrophic lateral sclerosis. Cell Rep 2024; 43:113892. [PMID: 38431841 DOI: 10.1016/j.celrep.2024.113892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/04/2023] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
Hexanucleotide repeat expansions in the C9orf72 gene are the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Due to the lack of trunk neuromuscular organoids (NMOs) from ALS patients' induced pluripotent stem cells (iPSCs), an organoid system was missing to model the trunk spinal neuromuscular neurodegeneration. With the C9orf72 ALS patient-derived iPSCs and isogenic controls, we used an NMO system containing trunk spinal cord neural and peripheral muscular tissues to show that the ALS NMOs could model peripheral defects in ALS, including contraction weakness, neural denervation, and loss of Schwann cells. The neurons and astrocytes in ALS NMOs manifested the RNA foci and dipeptide repeat proteins. Acute treatment with the unfolded protein response inhibitor GSK2606414 increased the glutamatergic muscular contraction 2-fold and reduced the dipeptide repeat protein aggregation and autophagy. This study provides an organoid system for spinal neuromuscular pathologies in ALS and its application for drug testing.
Collapse
Affiliation(s)
- Chong Gao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of Brain and Cognitive Science, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Qinghua Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Fudan University, Shanghai, China
| | - Xue Pan
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiajia Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yuhong Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Jiali Lang
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shan Wen
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Tian-Lin Cheng
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, China
| | - Kai Lei
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Zanella I, Zacchi E, Fornari C, Fumarola B, Antoni MD, Zizioli D, Quiros-Roldan E. An exploratory pilot study on the involvement of APOE, HFE, C9ORF72 variants and comorbidities in neurocognitive and physical performance in a group of HIV-infected people. Metab Brain Dis 2022; 37:1569-1583. [PMID: 35353274 PMCID: PMC8964929 DOI: 10.1007/s11011-022-00975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
Cognitive decline of aging is modulated by chronic inflammation and comorbidities. In people with HIV-infection (PWH) it may also be affected by HIV-induced inflammation, lifestyle and long-term effects of antiretroviral therapies (ART). The role of genetics in the susceptibility to HIV-associated neurocognitive disorders (HAND) is not fully understood. Here we explored the possible relations among variants in 3 genes involved in inflammation and neurodegenerative disorders (APOE: ε2/ε3/ε4; HFE: H63D; C9ORF72: hexanucleotide expansions ≥ 9 repeats), cognitive/functional impairment (MiniMental State Examination MMSE, Clock Drawing Test CDT, Short Physical Performance Battery SPPB), comorbidities and HIV-related variables in a cohort of > 50 years old PWH (n = 60) with at least 10 years efficient ART. Patients with diabetes or hypertension showed significantly lower MMSE (p = .031) or SPPB (p = .010) scores, respectively, while no relations between HIV-related variables and cognitive/functional scores were observed. Patients with at least one APOEε3 allele had higher CDT scores (p = .019), APOEε2/ε4 patients showing the lowest scores in all tests. Patients with HFE-H63D variant showed more frequently hypertriglyceridemia (p = .023) and those harboring C9ORF72 expansions > 9 repeats had higher CD4+-cell counts (p = .032) and CD4% (p = .041). Multiple linear regression analysis computed to verify possible associations among cognitive/functional scores and all variables further suggested positive association between higher CDT scores and the presence of at least one APOEε3 allele (2,2; 95% CI [0,03 0,8]; p = .037), independent of other variables, although the model did not reach the statistical significance (p = .14). These data suggest that in PWH on efficient ART cognitive abilities and physical performances may be partly associated with comorbidities and genetic background. However, further analyses are needed to establish whether they could be also dependent and influenced by comorbidities and genetic background.
Collapse
Affiliation(s)
- Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy.
- Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy.
| | - Eliana Zacchi
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Chiara Fornari
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Benedetta Fumarola
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Melania Degli Antoni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Eugenia Quiros-Roldan
- Department of Clinical and Experimental Sciences, University of Brescia, 25123, Brescia, Italy
- Division of Infectious and Tropical Diseases, ASST Spedali Civili Di Brescia, 25123, Brescia, Italy
| |
Collapse
|
4
|
Bonapace G, Gagliardi M, Procopio R, Morelli M, Quattrone A, Brighina L, Quattrone A, Annesi G. Multiple system atrophy and C9orf72 hexanucleotide repeat expansions in a cohort of Italian patients. Neurobiol Aging 2021; 112:12-15. [PMID: 35007998 DOI: 10.1016/j.neurobiolaging.2021.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 11/17/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Exanucleotide expansions in C9orf72 gene have been described as potential risk factor in some patients with Multiple system atrophy (MSA) and other forms of atypical parkinsonism. The goal of our study was to extend the knowledge on the involvement of C9orf72 in MSA studying a cohort of 100 patients from Italy. We identified 2 heterozygous patients in the pathological range (> 30 repeats) and 4 heterozygous patients for expansions in the premutation range (20 -30 repeats). Our findings strengthen the previously hypothesized role for this gene as a risk factor for MSA and raise the possibility of a more complex and still unknown involvement of this gene in the heterogeneity of MSA.
Collapse
Affiliation(s)
| | - Monica Gagliardi
- Institute for Biomedical Research and Innovation, National Research Council, Cosenza, Italy
| | - Radha Procopio
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy; National Research Council, Section of Germaneto, Institute of Molecular Bioimaging and Physiology, Catanzaro, Italy
| | - Maurizio Morelli
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Andrea Quattrone
- Institute of Neurology, Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Laura Brighina
- Department of Neurology, Milan Center for Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Aldo Quattrone
- Neuroscience centre, Magna Graecia University, Catanzaro, Italy
| | - Grazia Annesi
- Institute for Biomedical Research and Innovation, National Research Council, Cosenza, Italy
| |
Collapse
|
5
|
C9orf72 Intermediate Repeats Confer Genetic Risk for Severe COVID-19 Pneumonia Independently of Age. Int J Mol Sci 2021; 22:ijms22136991. [PMID: 34209673 PMCID: PMC8268051 DOI: 10.3390/ijms22136991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
A cytokine storm, autoimmune features and dysfunctions of myeloid cells significantly contribute to severe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Genetic background of the host seems to be partly responsible for severe phenotype and genes related to innate immune response seem critical host determinants. The C9orf72 gene has a role in vesicular trafficking, autophagy regulation and lysosome functions, is highly expressed in myeloid cells and is involved in immune functions, regulating the lysosomal degradation of mediators of innate immunity. A large non-coding hexanucleotide repeat expansion (HRE) in this gene is the main genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), both characterized by neuroinflammation and high systemic levels of proinflammatory cytokines, while HREs of intermediate length, although rare, are more frequent in autoimmune disorders. C9orf72 full mutation results in haploinsufficiency and intermediate HREs seem to modulate gene expression as well and impair autophagy. Herein, we sought to explore whether intermediate HREs in C9orf72 may be a risk factor for severe COVID-19. Although we found intermediate HREs in only a small portion of 240 patients with severe COVID-19 pneumonia, the magnitude of risk for requiring non-invasive or mechanical ventilation conferred by harboring intermediate repeats >10 units in at least one C9orf72 allele was more than twice respect to having shorter expansions, when adjusted for age (odds ratio (OR) 2.36; 95% confidence interval (CI) 1.04-5.37, p = 0.040). The association between intermediate repeats >10 units and more severe clinical outcome (p = 0.025) was also validated in an independent cohort of 201 SARS-CoV-2 infected patients. These data suggest that C9orf72 HREs >10 units may influence the pathogenic process driving more severe COVID-19 phenotypes.
Collapse
|
6
|
Shamim U, Ambawat S, Singh J, Thomas A, Pradeep-Chandra-Reddy C, Suroliya V, Uppilli B, Parveen S, Sharma P, Chanchal S, Nashi S, Preethish-Kumar V, Vengalil S, Polavarapu K, Keerthipriya M, Mahajan NP, Reddy N, Thomas PT, Sadasivan A, Warrier M, Seth M, Zahra S, Mathur A, Vibha D, Srivastava AK, Nalini A, Faruq M. C9orf72 hexanucleotide repeat expansion in Indian patients with ALS: a common founder and its geographical predilection. Neurobiol Aging 2020; 88:156.e1-156.e9. [PMID: 32035847 DOI: 10.1016/j.neurobiolaging.2019.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022]
Abstract
Hexanucleotide repeat expansion in C9orf72 is defined as a major causative factor for familial amyotrophic lateral sclerosis (ALS). The mutation frequency varies dramatically among populations of different ethnicity; however, in most cases, C9orf72 mutant has been described on a common founder haplotype. We assessed its frequency in a study cohort involving 593 clinically and electrophysiologically defined ALS cases. We also investigated the presence of reported Finnish haplotype among the mutation carriers. The identified common haplotype region was further screened in 192 (carrying 2-6 G4C2 repeats) and 96 (≥7 repeats) control chromosomes. The G4C2 expansion was observed in 3.2% (19/593) of total cases where 9/19 (47.4%) positive cases belonged to the eastern region of India. Haplotype analysis revealed 11 G4C2-Ex carriers shared the common haplotype (haplo-A) background spanning a region of ∼90 kbp (rs895021-rs11789520) including rs3849942 (a well-known global at-risk loci with T allele for G4C2 expansion). The other 3 G4C2-Ex cases had a different haplotype (haplo-B) with core difference from haplo-A at G4C2-Ex flanking 31 kbp region between rs3849942 and rs11789520 SNPs (allele 'C' of rs3849942 which is a nonrisk allele). Out of other five G4C2-cases, four carried the risk allele T of rs3849942 while one harbored the non-risk allele. This study establishes the prevalence of C9orf72 expansion in Indian ALS cases providing further evidence for geographical predilection. The global core risk haplotype predominated C9orf72 expansion-positive ALS cases, yet the existence of a different haplotype suggests a second lineage (haplo B), which may have been derived from the Finnish core haplotype or may imply a unique haplotype among Asians. The association of risk haplotype with normal intermediate C9orf72 alleles reinforced its role in conferring instability to the C9orf72-G4C2 region. We thus present an effective support to interpret future burden of ALS cases in India.
Collapse
Affiliation(s)
- Uzma Shamim
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Sakshi Ambawat
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jyotsna Singh
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Aneesa Thomas
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | | | - Varun Suroliya
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Bharathram Uppilli
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shaista Parveen
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Pooja Sharma
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shankar Chanchal
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Saraswati Nashi
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Seena Vengalil
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Kiran Polavarapu
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Muddasu Keerthipriya
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | | | - Neeraja Reddy
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Priya Treesa Thomas
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Arun Sadasivan
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Manjusha Warrier
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Malika Seth
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sana Zahra
- Department of Psychiatric Social Work, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Aradhana Mathur
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepti Vibha
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Achal K Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Atchayaram Nalini
- Neurology Department, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India.
| |
Collapse
|
7
|
Fredi M, Cavazzana I, Biasiotto G, Filosto M, Padovani A, Monti E, Tincani A, Franceschini F, Zanella I. C9orf72 Intermediate Alleles in Patients with Amyotrophic Lateral Sclerosis, Systemic Lupus Erythematosus, and Rheumatoid Arthritis. Neuromolecular Med 2019; 21:150-159. [PMID: 30859373 DOI: 10.1007/s12017-019-08528-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/07/2019] [Indexed: 12/11/2022]
Abstract
The commonest genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is a large hexanucleotide expansion within the non-coding region of the C9orf72 gene. The pathogenic mechanisms of the mutation seem toxic gain of functions, while haploinsufficiency alone appears insufficient to cause neurodegeneration. C9orf72-/- mice rather develop features of autoimmunity. Immune-mediated dysfunctions are involved in the pathogenesis of ALS and FTD and high prevalence of autoimmune disease has recently been observed in C9orf72 expansion-positive patients. Since intermediate repeat expansions result in decreased transcription of the gene, we explored the hypothesis that C9orf72 intermediate alleles could be a genetic risk for autoimmune conditions. We genotyped 69 systemic lupus erythematosus (SLE) and 77 rheumatoid arthritis (RA) patients, with 68 expansion-negative ALS patients, as control. A cut-off of ≥ 9 and ≤ 30 hexanucleotide units was chosen to define intermediate-length expansions. In the SLE and SLE + RA cohorts, both the number of patients with intermediate expansions and the overall number of intermediate alleles were significantly higher than in controls (23.2% vs. 7.4%, p = 0.020; 13.8% vs. 3.7%, p = 0.006, and 19.9% vs. 7.4%, p = 0.033, 11% vs. 3.7%, p = 0.021, respectively) and discernible although non-significant differences were found for the RA only cohort. Three SLE patients had intermediate-length expansions on both alleles, two of them harboring sequence variations within the hexanucleotide downstream region. However, no peculiar clinical features associated with the intermediate expansion were identified. Our results suggest that C9orf72 intermediate alleles could be associated with systemic autoimmune diseases, indicating a role of C9orf72 in immunity regulation.
Collapse
Affiliation(s)
- Micaela Fredi
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Ilaria Cavazzana
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | | | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Eugenio Monti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Angela Tincani
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Franco Franceschini
- Rheumatology and Clinical Immunology Unit, ASST Spedali Civili di Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
8
|
Bram E, Javanmardi K, Nicholson K, Culp K, Thibert JR, Kemppainen J, Le V, Schlageter A, Hadd A, Latham GJ. Comprehensive genotyping of the C9orf72 hexanucleotide repeat region in 2095 ALS samples from the NINDS collection using a two-mode, long-read PCR assay. Amyotroph Lateral Scler Frontotemporal Degener 2018; 20:107-114. [PMID: 30430876 DOI: 10.1080/21678421.2018.1522353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Expansion of the G4C2 repeat tract in the C9orf72 gene is linked to frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we provide comprehensive genotyping of the C9orf72 repeat region for the National Institute of Neurological Disorders and Stroke (NINDS) ALS collection (n = 2095), using a novel bimodal PCR assay capable of amplifying nearly 100% GC-rich sequences. METHODS A single-tube 3-primer PCR assay mode, resolved using capillary electrophoresis, was used for sizing up to 145 repeats with single-repeat accuracy, for detecting expansions irrespective of their overall size, and for flagging confounding 3' sequence variations (SVs). A modified two-primer PCR mode, resolved via agarose gel electrophoresis, provided further size information for hyper-expanded samples (>145 repeats) up to ∼5.8 kb amplicons (∼950 G4C2 repeats). RESULTS Within the evaluated cohort, 177 (8.4%) samples were expanded, with 175 (99%) samples being hyper-expanded. 3'-SVs were identified in 64 (3.1%) samples, and were most common in expanded alleles. Genotypes of all 606 (29%) homozygous samples were confirmed using an orthogonal PCR assay. CONCLUSION This study and PCR method may improve and standardize molecular characterization of the C9orf72 locus, and have the potential to inform phenotype-genotype correlations and therapeutic development in ALS/FTD.
Collapse
|
9
|
Biasiotto G, Zanella I. The effect of C9orf72 intermediate repeat expansions in neurodegenerative and autoimmune diseases. Mult Scler Relat Disord 2018; 27:42-43. [PMID: 30312838 DOI: 10.1016/j.msard.2018.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Giorgio Biasiotto
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Isabella Zanella
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Clinical Chemistry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.
| |
Collapse
|
10
|
Cosseddu M, Benussi A, Gazzina S, Turrone R, Archetti S, Bonomi E, Biasiotto G, Zanella I, Ferrari R, Cotelli MS, Alberici A, Padovani A, Borroni B. Mendelian forms of disease and age at onset affect survival in frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 2017; 19:87-92. [DOI: 10.1080/21678421.2017.1384020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maura Cosseddu
- Neurology Unit, Spedali Civili Hospital, Brescia, Italy,
| | - Alberto Benussi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Stefano Gazzina
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Rosanna Turrone
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Silvana Archetti
- Biotechnology Laboratory and Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy,
| | - Elisa Bonomi
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Giorgio Biasiotto
- Biotechnology Laboratory and Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy,
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy,
| | - Isabella Zanella
- Biotechnology Laboratory and Department of Diagnostics, Civic Hospital of Brescia, Brescia, Italy,
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy,
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK, and
| | | | - Antonella Alberici
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy,
| |
Collapse
|