1
|
Yang Y, Chen Y, Wang L, Du M, Zhang R, Lu Y, Pan S. Ssc-miR-130b Enhances Cell Proliferation and Represses Adipogenesis of Primary Cultured Intramuscular Preadipocytes in Pigs. Vet Sci 2025; 12:375. [PMID: 40284877 PMCID: PMC12030777 DOI: 10.3390/vetsci12040375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
In the efforts towards germplasm innovation of livestock and poultry, strategies to improve meat quality have faced some increasingly challenging and dynamic concerns. Intramuscular fat (IMF) content and backfat thickness are two important traits contributing to meat quality. MicroRNAs (miRNAs)-a class of endogenous noncoding RNAs maintaining cell homeostasis by inhibiting target gene expression-have been proven as critical regulators of body fat deposition, thus affecting farm animal production. Our previous in vitro and in vivo models of pigs have clarified that miR-130b overexpression can obviously suppress adipogenesis of subcutaneous preadipocytes and lower backfat thickness. However, the way miR-130b regulates proliferation and adipogenesis of primary cultured porcine intramuscular preadipocytes (PIMPA) and the underlying mechanism are still unknown. PIMPA derived from longissimus dorsi muscle were employed to examine the role of miR-130b in proliferation and adipogenesis and to further elucidate its underlying mechanism. Lipid deposition in cytoplasm was evaluated by TG quantification and ORO-staining, and EDU-staining was employed to measure cell proliferation. Adipogenic and proliferation-related gene expression were conducted by qPCR and Western blot. MiR-130b overexpression markedly stimulated proliferation of PIMPA by increasing cell cycle-related gene expression. Furthermore, overexpression of miR-130b significantly inhibited adipogenic differentiation of PIMPA, mainly by inhibiting expression of adipogenic differentiation marker genes PPAR-γ and SREBP1. In addition, we proved that miR-130b significantly inhibited expression of PPAR-γ downstream target genes and ultimately repressed adipogenesis. Ssc-miR-130b accelerated proliferation but inhibited adipogenic differentiation of PIMPA, contributing to an enhanced knowledge of the function of ssc-miR-130b in lipid deposition, and providing potential implications for enhancing pork quality.
Collapse
Affiliation(s)
- Yunqiu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Y.); (Y.C.); (L.W.)
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Y.); (Y.C.); (L.W.)
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Y.); (Y.C.); (L.W.)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Rui Zhang
- Meat Processing Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China;
| | - Yao Lu
- Clinical Medical College, Yangzhou University, Yangzhou 225009, China;
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.Y.); (Y.C.); (L.W.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Li J, Zhao X, Wang Y, Wang J. Non-Coding RNAs in Regulating Fat Deposition in Farm Animals. Animals (Basel) 2025; 15:797. [PMID: 40150326 PMCID: PMC11939817 DOI: 10.3390/ani15060797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Fat deposition represents a crucial feature in the expenditure of physical energy and affects the meat quality of farm animals. It is regulated by multiple genes and regulators. Of them, non-coding RNAs (ncRNAs) play a critical role in modulating the fat deposition process. As well as being an important protein source, farm animals can be used as medical models, so many researchers worldwide have explored their mechanism of fat deposition. This article summarizes the transcription factors, regulatory genes, and signaling pathways involved in the molecular regulation process of fat deposition; outlines the progress of researching the roles of microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs) in fat deposition in common farm animals including pigs, cattle, sheep, ducks, and chickens; and identifies scientific problems in the field that must be further investigated. It has been demonstrated that ncRNAs play a critical role in regulating the fat deposition process and have great potential in improving meat quality traits.
Collapse
Affiliation(s)
- Jingxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Xueyan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Yanping Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Jiying Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (J.L.); (X.Z.); (Y.W.)
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
3
|
Yu Y, Chen Y, Wang L, Cheng J, Du M, Pan S. Rno-miR-130b Attenuates Lipid Accumulation Through Promoting Apoptosis and Inhibiting Differentiation in Rat Intramuscular Adipocytes. Int J Mol Sci 2025; 26:1399. [PMID: 40003868 PMCID: PMC11855280 DOI: 10.3390/ijms26041399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
Our previous studies have shown that miR-130b can significantly inhibit subcutaneous fat deposition in pigs. This study aims to further investigate its effect on lipid accumulation at early-stage (24 and 48 h) and late-stage (7 d) adipogenic differentiation and to clarify potential mechanisms using primary rat intramuscular preadipocytes (IMAs). Results showed that at 24 h and 48 h, miR-130b overexpression significantly reduced lipid deposition by inhibiting proliferation and inducing apoptosis. Furthermore, miR-130b overexpression significantly inhibited the expression of cell cycle and apoptosis marker genes. Specifically, the mRNA expression of Ccnd1 tended to decrease, while the BCL2 protein level was significantly decreased at 48 h. In contrast, miR-130b inhibition significantly increased the BCL2 protein level. At 7 d, the miR-130b mimic significantly decreased intracellular TG content and tended to decrease Hsd11b1 mRNA expression while significantly promoting Lpl mRNA expression. Additionally, the miR-130b mimic significantly increased the CASP3 protein level and tended to decrease the BCL2 protein level. In conclusion, our data indicated for the first time that miR-130b could reduce lipid deposition in rat IMAs through different mechanisms: at the early stage of differentiation by inhibiting proliferation and promoting apoptosis and at the late stage by inhibiting adipogenic differentiation, promoting lipid hydrolysis, and promoting apoptosis.
Collapse
Affiliation(s)
- Yichen Yu
- Guangling College, Yangzhou University, Yangzhou 225009, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Yongfang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Ji Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Shifeng Pan
- Guangling College, Yangzhou University, Yangzhou 225009, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Y.C.); (L.W.); (J.C.)
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA;
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Ma X, Zhang D, Yang Z, Sun M, Gao N, Mei C, Zan L. bta-miR-484 Inhibits Bovine Intramuscular Adipogenesis by Regulating Mitotic Clonal Expansion via the MAP3K9/JNK/CCND1 Axis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1062-1074. [PMID: 39719059 DOI: 10.1021/acs.jafc.4c07956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Intramuscular fat (IMF) content is a critical indicator of the beef nutritional value and flavor. In this study, we focused on bta-miR-484, a microRNA that is differentially expressed during the adipogenic differentiation of bovine intramuscular adipocytes and is negatively correlated with the IMF content across different cattle breeds. Our findings demonstrate that bta-miR-484 inhibits adipogenic differentiation without altering the fatty acid composition of bovine intramuscular adipocytes. miRNA pull-down and dual-luciferase reporter assays confirmed that MAP3K9 is a target gene of bta-miR-484. Furthermore, bta-miR-484 suppresses the JNK signaling pathway by targeting MAP3K9, leading to decreased CCND1 expression, which impedes the mitotic clonal expansion (MCE) process and inhibits intramuscular adipocyte differentiation. In summary, this study uncovers a novel mechanism by which bta-miR-484 regulates bovine IMF content and provides the first exploration of MCE during intramuscular adipocyte adipogenic differentiation. These findings offer valuable theoretical insights into beef cattle breeding and molecular improvements.
Collapse
Affiliation(s)
- Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dianqi Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Meijun Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Ni Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Chugang Mei
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
5
|
Alonso-Villa E, Mangas A, Bonet F, Campuzano Ó, Quezada-Feijoo M, Ramos M, García-Padilla C, Franco D, Toro R. The Protective Role of miR-130b-3p Against Palmitate-Induced Lipotoxicity in Cardiomyocytes Through PPARγ Pathway. Int J Mol Sci 2024; 25:12161. [PMID: 39596228 PMCID: PMC11594327 DOI: 10.3390/ijms252212161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Excess lipid accumulation in the heart is associated with lipotoxicity and cardiac dysfunction due to excessive fatty acid oxidation. Peroxisome proliferator-activated receptor gamma (PPARγ) modulates the expression of key molecules involved in the FA metabolic pathway. Cardiomyocyte-specific overexpression of PPARγ causes dilated cardiomyopathy associated with lipotoxicity in mice. miR-130b-3p has been shown to be downregulated in the plasma of idiopathic dilated cardiomyopathy patients, but its role in modulating cardiomyocyte lipotoxicity via PPARγ remains unclear. Our objective was to investigate the protective role of miR-130b-3p against palmitate-induced lipotoxicity in cardiomyocytes through the modulation of the PPARγ signaling pathway. Human cardiomyoblasts were treated with palmitate. Intracellular lipid accumulation and expression of PPARγ and its downstream targets (CD36, FABP3, CAV1, VLDLR) were analyzed. Mitochondrial oxidative stress was assessed via MitoTracker Green and Redox Sensor Red staining and expression of CPT1B and SOD2. Endoplasmic reticulum stress and apoptosis were determined by examining GRP78, ATF6, XBP1s, CHOP, and caspase-3 expression. miR-130b-3p overexpression was achieved using transfection methods, and its effect on these parameters was evaluated. Luciferase assays were used to confirm PPARγ as a direct target of miR-130b-3p. Palmitate treatment led to increased lipid accumulation and upregulation of PPARγ and its downstream targets in human cardiomyoblasts. Palmitate also increased mitochondrial oxidative stress, endoplasmic reticulum stress and apoptosis. miR-130b-3p overexpression reduced PPARγ expression and its downstream signaling, alleviated mitochondrial oxidative stress and decreased endoplasmic reticulum stress and apoptosis in palmitate-stimulated cardiomyoblasts. Luciferase assays confirmed PPARγ as a direct target of miR-130b-3p. Our findings suggest that miR-130b-3p plays a protective role against palmitate-induced lipotoxicity in cardiomyocytes by modulating the PPARγ signaling pathway.
Collapse
Affiliation(s)
- Elena Alonso-Villa
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Alipio Mangas
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
- Lipid and Atherosclerotic Unit, Internal Medicine Department, Puerta del Mar University Hospital Cardiology Service, 11009 Cádiz, Spain
| | - Fernando Bonet
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| | - Óscar Campuzano
- Hospital Josep Trueta, University of Girona, 17007 Girona, Spain;
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Centro de Investigación Biomédica en Red, Fisiopatología Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maribel Quezada-Feijoo
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Mónica Ramos
- Cardiology Department, Hospital Central de la Cruz Roja, 28003 Madrid, Spain; (M.Q.-F.); (M.R.)
- Medicine School, Alfonso X el Sabio University (UAX), 28691 Madrid, Spain
| | - Carlos García-Padilla
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Diego Franco
- Cardiovascular Research Group, Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (C.G.-P.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, 18016 Granada, Spain
| | - Rocio Toro
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, 11009 Cádiz, Spain; (E.A.-V.); (A.M.); (F.B.)
- Medicine Department, School of Medicine, University of Cadiz, 11002 Cádiz, Spain
| |
Collapse
|
6
|
Su Q, Raza SHA, Gao Z, Zhang F, Wu Z, Ji Q, He T, Aloufi BH, El-Mansi AA, Eldesoqui M, Sabir DK, Gui L. Profiling and functional analysis of circular RNAs in yaks intramuscular fat. J Anim Physiol Anim Nutr (Berl) 2024; 108:1016-1027. [PMID: 38432684 DOI: 10.1111/jpn.13947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/05/2024]
Abstract
Circular RNAs (circRNAs) are a new class of endogenous RNA regulating gene expression. However, the regulatory mechanisms of lipid metabolism in yaks involved in circRNAs remain poorly understood. The IMF plays a crucial role in the quality of yak meat, to greatly improve the meat quality. In this study, the fatty acid profiles of yak IMF were determined and circRNAs were sequenced. The results showed that the total of polyunsaturated fatty acid (PUFA) content of adult yak muscle was significantly higher than that in yak calves (p < 0.05). A total of 29,021 circRNAs were identified in IMF tissue, notably, 99 differentially expressed (DE) circRNAs were identified, to be associated with fat deposition, the most significant of which were circ_12686, circ_6918, circ_3582, ci_106 and ci_123 (A circRNA composed of exons is labelled 'circRNA' and a circRNA composed of introns is labelled 'ciRNA'). KEGG pathway enrichment analysis showed that the differential circRNAs were enriched in four pathways associated with fat deposition (e.g., the peroxisome proliferator-activated receptor signalling, fatty acid degradation, sphingolipid metabolism and sphingolipid signalling pathways). We also constructed co-expression networks of DE circRNA-miRNA using high-throughput sequencing in IMF deposition, from which revealed that ci_106 target binding of bta-miR-130b, bta-miR-148a, bta-miR-15a, bta-miR-34a, bta-miR-130a, bta-miR-17-5p and ci_123 target binding of bta-miR-150 were involved in adipogenesis. The study revealed the role of the circRNAs in the IMF deposition in yak and its influence on meat quality the findings demonstrated the circRNA differences in the development of IMF with the increase of age, thus providing a theoretical basis for further research on the molecular mechanism of IMF deposition in yaks.
Collapse
Affiliation(s)
- Quyangangmao Su
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Sayed Haidar Abbas Raza
- Guangdong Provincial Key Laboratory of Food Quality and Safet, Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhanhong Gao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Fengshuo Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - ZhenLing Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - QiuRong Ji
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - TingLi He
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Ahmed A El-Mansi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Diriyah, Riyadh, Saudi Arabia
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Deema Kamal Sabir
- Department of Medical Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Linsheng Gui
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, People's Republic of China
| |
Collapse
|
7
|
Chen M, Zhang C, Wu Z, Guo S, Lv W, Song J, Hao B, Bai J, Zhang X, Xu H, Xia G. Bta-miR-365-3p-targeted FK506-binding protein 5 participates in the AMPK/mTOR signaling pathway in the regulation of preadipocyte differentiation in cattle. Anim Biosci 2024; 37:1156-1167. [PMID: 38665092 PMCID: PMC11222839 DOI: 10.5713/ab.23.0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 02/18/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE MicroRNAs (miRNAs) are endogenous non-coding RNAs that can play a role in the post-transcriptional regulation of mammalian preadipocyte differentiation. However, the precise functional mechanism of its regulation of fat metabolism is not fully understood. METHODS We identified bta-miR-365-3p, which specifically targets the 3' untranslated region (3'UTR) of the FK506-binding protein 5 (FKBP5), and verified its mechanisms for regulating expression and involvement in adipogenesis. RESULTS In this study, we found that the overexpression of bta-miR-365-3p significantly decreased the lipid accumulation and triglyceride content in the adipocytes. Compared to inhibiting bta-miR-36 5-3p group, overexpression of bta-miR-365-3p can inhibit the expression of adipocyte differentiation-related genes C/EBPα and PPARγ. The dualluciferase reporter system further validated the targeting relationship between bta-miR-365-3p and FKBP5. FKBP5 mRNA and protein expression were detected by quantitative real-time polymerase chain reaction and Western blot. Overexpression of bta-miR-365-3p significantly down-regulated FKBP5 expression, while inhibition of bta-miR-365-3p showed the opposite, indicating that bta-miR-365-3p negatively regulates FKBP5. Adenosine 5'-monophosphate (AMP)-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) signaling pathway is closely related to the regulation of cell growth and is involved in the development of bovine adipocytes. In this study, overexpression of bta-miR-365-3p significantly inhibited mRNA and protein expression of AMPK, mTOR, and SREBP1 genes, while the inhibition of bta-miR-365-3p expression was contrary to these results. Overexpression of FKBP5 significantly upregulated AMPK, mTOR, and SREBP1 gene expression, while inhibition of FKBP5 expression was contrary to the above experimental results. CONCLUSION In conclusion, these results indicate that bta-miR-365-3p may be involved in the AMPK/mTOR signaling pathway in regulating Yanbian yellow cattle preadipocytes differentiation by targeting the FKBP5 gene.
Collapse
Affiliation(s)
- Mengdi Chen
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Congcong Zhang
- Institute of Animal Science, Jilin Academy of Agricultural Science, Changchun 136100,
China
| | - Zewen Wu
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Siwei Guo
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Wenfa Lv
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun 130118,
China
| | - Jixuan Song
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Beibei Hao
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Jinhui Bai
- College of Agriculture, Yanbian University, Yanji 133000,
China
| | - Xinxin Zhang
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Hongyan Xu
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
| | - Guangjun Xia
- College of Agriculture, Yanbian University, Yanji 133000,
China
- College of Integration Science, Yanbian University, Yanji 133000,
China
- Research Center of North-East Cold Region Beef Cattle Science & Technology Innovation, Yanbian University, Yanji, Jilin 133000,
China
| |
Collapse
|
8
|
Zhao Y, Zhang W, Raza SHA, Qu X, Yang Z, Deng J, Ma J, Aloufi BH, Wang J, Zan L. CircSSBP2 acts as a MiR-2400 sponge to promote intramuscular preadipocyte proliferation by regulating NDRG1. Mol Genet Genomics 2024; 299:48. [PMID: 38700639 DOI: 10.1007/s00438-024-02138-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/03/2024] [Indexed: 05/24/2024]
Abstract
Intramuscular fat (IMF) is a critical factor in beef quality. IMF is mainly distributed between muscle fibres and its accumulation can affect the marbling and meat quality of beef. IMF formation and deposition is a complex process and in recent years a group of non-coding RNAs (ncRNAs), known as circRNAs, have been discovered to play an important role in regulating intramuscular fat deposition. CircRNAs form a covalent loop structure after reverse splicing of precursor mRNAs. They can act by adsorbing miRNAs, thereby reducing their repressive effects on downstream target genes. Based on high-throughput sequencing of circRNAs in intramuscular fat of Qinchuan and Japanese black cattle, we identified a novel circSSBP2 that is differentially expressed between the two species and associated with adipogenesis. We show that circSSBP2 knockdown promotes bovine intramuscular preadipocyte proliferation, whereas overexpression inhibits bovine intramuscular preadipocyte proliferation. We also show that circSSBP2 can act as a molecular sponge for miR-2400 and that miR-2400 overexpression promotes bovine intramuscular preadipocyte proliferation. Furthermore, N-myc downstream-regulated gene 1 (NDRG1) was identified as a direct target gene of miR-2400, and NDRG1 interference promoted the proliferation of bovine intramuscular preadipocytes. In conclusion, our results suggest that circSSBP2 inhibits the proliferation of bovine intramuscular preadipocytes by regulating the miR-2400/NDRG1 axis.
Collapse
Affiliation(s)
- Yanqing Zhao
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, 402460, China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Xiaopeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Zhimei Yang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jiahan Deng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Jing Ma
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Bandar Hamad Aloufi
- Biology Department, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Juze Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
9
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
10
|
Yu B, Liu J, Cai Z, Mu T, Zhang D, Feng X, Gu Y, Zhang J. MicroRNA-19a regulates milk fat metabolism by targeting SYT1 in bovine mammary epithelial cells. Int J Biol Macromol 2023; 253:127096. [PMID: 37769766 DOI: 10.1016/j.ijbiomac.2023.127096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
MicroRNAs (miRNAs) are important post-transcriptional factors involved in the regulation of gene expression and play crucial roles in biological processes related to milk fat metabolism. Our previous study revealed that miR-19a expression was significantly higher in the mammary epithelial cells of high-milk fat cows than in those of low-milk fat cows. However, the precise molecular mechanisms underlying these differences remain unclear. In this study, we found a high expression of miR-19a in the mammary tissues of dairy cows. The regulatory effects of miR-19a on bovine mammary epithelial cells (BMECs) were analyzed using cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays, which demonstrated that miR-19a significantly inhibited BMEC proliferation. Transfection of the miR-19a mimic into BMECs significantly upregulated the expression of milk fat marker genes LPL, SCAP, and SREBP1, promoting triglyceride (TG) synthesis and lipid droplet formation, whereas the miR-19a inhibitor exhibited the opposite function. TargetScan and miRWalk predictions revealed that synaptotagmin 1 (SYT1) is a target gene of miR-19a. A dual luciferase reporter gene assay, RT-qPCR, and western blot analyses revealed that miR-19a directly targets the 3'-untranslated region (UTR) of SYT1 and negatively regulates SYT1 expression. Functional validation revealed that overexpression of SYT1 in BMECs significantly downregulated the expression of LPL, SCAP, and SREBP1, and inhibited TG synthesis and lipid droplet formation. Conversely, the knockdown of SYT1 had the opposite effect. Altogether, miR-19a plays a crucial role in regulating the proliferation and differentiation of BMECs and regulates biological processes related to TG synthesis and lipid droplet formation by suppressing SYT1 expression. These findings provide a strong foundation for further research on the functional mechanisms underlying milk fat metabolism in dairy cows.
Collapse
Affiliation(s)
- Baojun Yu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Jiamin Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Zhengyun Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Tong Mu
- School of Life Sciences, Yan'an University, Yan'an 716000, China
| | - Di Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Xiaofang Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Yaling Gu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China
| | - Juan Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular Cell Breeding in Ningxia, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
11
|
Luo M, Wang H, Zhang J, Yixi K, Shu S, Fu C, Zhong J, Peng W. IMF deposition ceRNA network analysis and functional study of HIF1a in yak. Front Vet Sci 2023; 10:1272238. [PMID: 37915947 PMCID: PMC10616239 DOI: 10.3389/fvets.2023.1272238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The concentration of intramuscular fat (IMF) is a crucial determinant of yak meat quality. However, the molecular mechanisms that regulate IMF in yak remain largely elusive. In our study, we conducted transcriptome sequencing on the longissimus dorsi muscle tissues of yaks with varying IMF contents. We then filtered differentially expressed genes (DEGs), microRNAs (DEMs), and long non-coding RNAs (DELs) to elucidate potential regulatory pathways of adipogenesis in yaks. Overall, our research sheds light on an array of potential mRNAs and noncoding RNAs implicated in IMF deposition and elaborates on the role of HIF1α in yaks. These findings contribute valuable insights that can serve as a guide for further research into the molecular mechanisms governing IMF deposition.
Collapse
Affiliation(s)
- Mengning Luo
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hui Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Jun Zhang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Kangzhu Yixi
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Shi Shu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Changqi Fu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Jincheng Zhong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Wei Peng
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
12
|
Gong Y, Lin Z, Wang Y, Liu Y. Research progress of non-coding RNAs regulation on intramuscular adipocytes in domestic animals. Gene 2023; 860:147226. [PMID: 36736503 DOI: 10.1016/j.gene.2023.147226] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/07/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
Intramuscular fat (IMF) is the main determinant of the economic value of domestic animal meat, and has a vital impact on the sensory quality characteristics, while the content of IMF is mainly determined by the size and number of intramuscular adipocytes. In recent years, due to the development of sequencing technology and omics technology, a large number of non-coding RNAs have been identified in intramuscular adipocytes. Non-coding RNAs are a kind of RNA regulatory factors with biological functions but without translation function, which mainly include microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These non-coding RNAs regulate the key genes of intramuscular adipocyte growth and development at post-transcriptional level through a variety of regulatory mechanisms, and affect the number and size of intramuscular adipocytes, thus affecting the content of IMF. Here, the review summarizes the candidate non-coding RNAs (miRNAs, lncRNAs, circRNAs) and genes involved in the regulation of intramuscular adipocytes, the related regulation mechanism and signaling pathways, in order to provide reference for further clarifying the molecular regulation mechanism of non-coding RNAs on intramuscular adipocytes in domestic animals.
Collapse
Affiliation(s)
- Yanrong Gong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhongzhen Lin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
13
|
Yang M, Gao X, Ma Y, Wang X, Lei Z, Wang S, Hu H, Tang L, Ma Y. Bta-miR-6517 promotes proliferation and inhibits differentiation of pre-adipocytes by targeting PFKL. J Anim Physiol Anim Nutr (Berl) 2022; 106:1197-1207. [PMID: 34791721 DOI: 10.1111/jpn.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022]
Abstract
The proliferation and differentiation of pre-adipocytes are regulated by microRNAs (miRNAs) and other factors. In this study, the potential functions of bta-miR-6517 in the regulation of pre-adipocyte proliferation and differentiation were explored. The qRT-PCR, oil red O staining and CCK-8 assay were used to evaluate the role of bta-miR-6517. Further, the target gene of bta-miR-6517 was identified using bioinformatics analysis, dual-luciferase reporter system and qRT-PCR system. The results found that the overexpression of bta-miR-6517 promoted the expression of proliferation marker genes and substantially increased the adipocyte proliferation vitality in the CCK-8 assay, whereas suppressing of bta-miR-6517 had the opposite effect. Overexpression bta-miR-6517 suppressed the expression of adipogenic genes, which inhibited lipid accumulation, whereas suppressing of bta-miR-6517 had the opposite effect. Furthermore, the dual-fluorescent reporter experiment results demonstrated that bta-miR-6517 directly targeted phosphofructokinase, liver type (PFKL). When bta-miR-6517 was either overexpressed or suppressed, it negatively regulated PFKL. In conclusion, we observed that bta-miR-6517 promoted adipocyte proliferation and inhibited differentiation by targeting PFKL.
Collapse
Affiliation(s)
- Mengli Yang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaoqian Gao
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yanfen Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xingping Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Zhaoxiong Lei
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuzhe Wang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Honghong Hu
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
| | - Yun Ma
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Agriculture, Ningxia University, Yinchuan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
14
|
Li X, Bai Y, Li J, Chen Z, Ma Y, Shi B, Han X, Luo Y, Hu J, Wang J, Liu X, Li S, Zhao Z. Transcriptional analysis of microRNAs related to unsaturated fatty acid synthesis by interfering bovine adipocyte ACSL1 gene. Front Genet 2022; 13:994806. [PMID: 36226194 PMCID: PMC9548527 DOI: 10.3389/fgene.2022.994806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Long-chain fatty acyl-CoA synthase 1 (ACSL1) plays a vital role in the synthesis and metabolism of fatty acids. The proportion of highly unsaturated fatty acids in beef not only affects the flavor and improves the meat’s nutritional value. In this study, si-ACSL1 and NC-ACSL1 were transfected in bovine preadipocytes, respectively, collected cells were isolated on the fourth day of induction, and then RNA-Seq technology was used to screen miRNAs related to unsaturated fatty acid synthesis. A total of 1,075 miRNAs were characterized as differentially expressed miRNAs (DE-miRNAs), of which the expressions of 16 miRNAs were upregulated, and that of 12 were downregulated. Gene ontology analysis indicated that the target genes of DE-miRNAs were mainly involved in biological regulation and metabolic processes. Additionally, KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis identified that the target genes of DE-miRNAs were mainly enriched in metabolic pathways, fatty acid metabolism, PI3K-Akt signaling pathway, glycerophospholipid metabolism, fatty acid elongation, and glucagon signaling pathway. Combined with the previous mRNA sequencing results, several key miRNA-mRNA targeting relationship pairs, i.e., novel-m0035-5p—ACSL1, novel-m0035-5p—ELOVL4, miR-9-X—ACSL1, bta-miR-677—ACSL1, miR-129-X—ELOVL4, and bta-miR-485—FADS2 were screened via the miRNA-mRNA interaction network. Thus, the results of this study provide a theoretical basis for further research on miRNA regulation of unsaturated fatty acid synthesis in bovine adipocytes.
Collapse
|
15
|
Huang CJ, Choo KB, Chen CF. The MicroRNA-Signaling-Peroxisome Proliferator-Activated Receptor Gamma Connection in the Modulation of Adipogenesis: Bioinformatics Projection on Chicken. Poult Sci 2022; 101:101950. [PMID: 35689996 PMCID: PMC9192975 DOI: 10.1016/j.psj.2022.101950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/19/2022] [Accepted: 04/15/2022] [Indexed: 10/29/2022] Open
|
16
|
Li Y, Yang M, Lou A, Yun J, Ren C, Li X, Xia G, Nam K, Yoon D, Jin H, Seo K, Jin X. Integrated analysis of expression profiles with meat quality traits in cattle. Sci Rep 2022; 12:5926. [PMID: 35396568 PMCID: PMC8993808 DOI: 10.1038/s41598-022-09998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 03/31/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance. In the present study, 90 differentially expressed mRNAs (DEGs) and 18 differentially expressed miRNAs (DEMs) were identified. Eighty-three potential DEG targets and 18 DEMs were used to structure a negative interaction network, and 75 matching target genes were shown in this network. Twenty-six target genes were designated as intersection genes, screened from 18 DEMs, and overlapped with the DEGs. Seventeen of these genes enriched to 19 terms involved in lipid metabolism. Subsequently, 13 DEGs and nine DEMs were validated using quantitative real-time PCR, and seven critical genes were selected to explore the influence of fat and fatty acids through hub genes and predict functional association. A dual-luciferase reporter and Western blot assays confirmed a predicted miRNA target (bta-miR-409a and PLIN5). These findings provide substantial evidence for molecular genetic controls and interaction among genes in cattle.
Collapse
Affiliation(s)
- Yunxiao Li
- College of Life Science, Shandong University, Qingdao, China
| | - Miaosen Yang
- Department of Chemistry, Northeast Electric Power University, Jilin, China
| | - Angang Lou
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Jinyan Yun
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Chunyu Ren
- Animal Husbandry Bureau of Yanbian Autonomous Prefecture, Yanji, China
| | - Xiangchun Li
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Guangjun Xia
- Department of Veterinary Medicine, College of Agriculture, Yanbian University, Yanji, China
| | - Kichang Nam
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea
| | - Duhak Yoon
- Department of Animal Science, Kyungpook National University, Taegu, South Korea
| | - Haiguo Jin
- Branch of Animal Husbandry, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kangseok Seo
- Department of Animal Science and Technology, College of Life Science and Natural Resources, Sunchon National University, Sunchon, South Korea.
| | - Xin Jin
- Engineering Research Center of North-East Cold Region Beef Cattle Science and Technology Innovation, Ministry of Education, Yanbian University, Yanji, China.
| |
Collapse
|
17
|
Huang L, Luo J, Song N, Gao W, Zhu L, Yao W. CRISPR/Cas9-Mediated Knockout of miR-130b Affects Mono- and Polyunsaturated Fatty Acid Content via PPARG-PGC1α Axis in Goat Mammary Epithelial Cells. Int J Mol Sci 2022; 23:3640. [PMID: 35409000 PMCID: PMC8998713 DOI: 10.3390/ijms23073640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA (miRNA)-130b, as a regulator of lipid metabolism in adipose and mammary gland tissues, is actively involved in lipogenesis, but its endogenous role in fatty acid synthesis remains unclear. Here, we aimed to explore the function and underlying mechanism of miR-130b in fatty acid synthesis using the CRISPR/Cas9 system in primary goat mammary epithelial cells (GMEC). A single clone with deletion of 43 nucleotides showed a significant decrease in miR-130b-5p and miR-130b-3p abundances and an increase of target genes PGC1α and PPARG. In addition, knockout of miR-130b promoted triacylglycerol (TAG) and cholesterol accumulation, and decreased the proportion of monounsaturated fatty acids (MUFA) C16:1, C18:1 and polyunsaturated fatty acids (PUFA) C18:2, C20:3, C20:4, C20:5, C22:6. Similarly, the abundance of fatty acid synthesis genes ACACA and FASN and transcription regulators SREBP1c and SREBP2 was elevated. Subsequently, interference with PPARG instead of PGC1α in knockout cells restored the effect of miR-130b knockout, suggesting that PPARG is responsible for miR-130b regulating fatty acid synthesis. Moreover, disrupting PPARG inhibits PGC1α transcription and translation. These results reveal that miR-130b directly targets the PPARG-PGC1α axis, to inhibit fatty acid synthesis in GMEC. In conclusion, miR-130b could be a potential molecular regulator for improving the beneficial fatty acids content in goat milk.
Collapse
Affiliation(s)
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (L.H.); (N.S.); (W.G.); (L.Z.); (W.Y.)
| | | | | | | | | |
Collapse
|
18
|
Zhao B, Pan Y, Qiao L, Liu J, Yang K, Liang Y, Liu W. miR-301a inhibits adipogenic differentiation of adipose-derived stromal vascular fractions by targeting HOXC8 in sheep. Anim Sci J 2021; 92:e13661. [PMID: 34856652 DOI: 10.1111/asj.13661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) regulate adipogenic differentiation in stromal vascular fractions (SVFs) through post-transcriptional regulation of transcription factors and other functional genes. miR-301 and the homeobox C8 (HOXC8) gene are involved in lipid homeostasis; however, their roles in the adipogenic differentiation of ovine SVFs are unknown. Here, we explored the effects of miR-301 and HOXC8 on adipogenic differentiation in ovine SVFs and the regulatory role of miR-301a in HOXC8 expression. Additionally, we evaluated the effect of miR-301a and HOXC8 on the mRNA abundance of adipogenic markers and the ability of ovine SVFs to accumulate lipids. We found that miR-301a regulates adipogenic differentiation in ovine SVFs by directly targeting the 3'-untranslated region of HOXC8, resulting in significant downregulation of the HOXC8 mRNA and protein. Moreover, miR-301a overexpression suppressed adipogenic differentiation in ovine SVFs and significantly inhibited the expression of adipogenesis-related genes-including adiponectin, C/EBPα, PPARγ, and FABP4. Conversely, HOXC8 overexpression in ovine SVFs increased the accumulation of lipid droplets and remarkably promoted the expression of adipogenic markers. Taken together, our results indicate that miR-301a attenuates the adipogenic differentiation of ovine SVFs by targeting HOXC8. These findings improve our understanding of the mechanism of lipid accumulation and metabolism in sheep.
Collapse
Affiliation(s)
- Bishi Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yangyang Pan
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Liying Qiao
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Jianhua Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Kaijie Yang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Yu Liang
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| | - Wenzhong Liu
- College of Animal Science, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
19
|
Zhao Z, Bai Y, Tian H, Shi B, Li X, Luo Y, Wang J, Hu J, Abbas Raza SH. Interference with ACSL1 gene in bovine adipocytes: Transcriptome profiling of circRNA related to unsaturated fatty acid production. Genomics 2021; 113:3967-3977. [PMID: 34601049 DOI: 10.1016/j.ygeno.2021.09.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/23/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023]
Abstract
Long-chain acyl-CoA synthetase 1 (ACSL1) is a member of the acyl-CoA synthetase family that plays a vital role in lipid metabolism. We have previously shown that the ACSL1 gene regulates the composition of unsaturated fatty acids (UFAs) in bovine skeletal muscle, which in turn regulates the fatty acid synthesis and the generation of lipid droplets. Here, we used RNA-Seq to screen circRNAs that regulated the expression of ACSL1 gene and other UFA synthesis-related genes by RNA interference and noninterference in bovine adipocytes. The results of KEGG pathway analysis showed that the parental genes of differentially expressed (DE)-circRNAs were primarily enriched in the adipocytokine signaling pathway. The prediction results showed that novel_circ_0004855, novel_circ_0001507, novel_circ_0001731, novel_circ_0005276, novel_circ_0002060, novel_circ_0005405 and novel_circ_0004254 regulated UFA synthesis-related genes by interacting with the related miRNAs. These results could help expand our knowledge of the molecular mechanisms of circRNAs in the regulation of UFA synthesis in bovine adipocytes.
Collapse
Affiliation(s)
- Zhidong Zhao
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanbin Bai
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Hongshan Tian
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Bingang Shi
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xupeng Li
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuzhu Luo
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiqing Wang
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiang Hu
- College of Animal Science and Technology, Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
20
|
Bta-miR-2400 Targets SUMO1 to Affect Yak Preadipocytes Proliferation and Differentiation. BIOLOGY 2021; 10:biology10100949. [PMID: 34681048 PMCID: PMC8533534 DOI: 10.3390/biology10100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Yak adipose tissue may have evolved a unique energy metabolism manner to accommodate the organism's seasonal growth rhythms. MiRNAs regulate multiple biological processes including systemic metabolism and energy homeostasis through post-transcriptional regulations. Rare reports have shown that miRNAs regulate lipid metabolism in domestic yaks. Therefore, we investigated the regulatory mechanisms of bta-miR-2400 in modulating yak preadipocytes proliferation and differentiation. We found that bta-miR-2400 was highly expressed in adipose tissue. Overexpression of bta-miR-2400 in yak preadipocytes significantly enhanced cell proliferation, increased the number of EdU fluorescence-stained cells, and promoted the expression of proliferation marker genes (CDK2, CDK4 and PCNA). Besides, overexpression of bta-miR-2400 repressed the expression of adipogenesis-related marker genes, and the content of cellular triglyceride was substantially reduced. Conversely, inhibition of bta-miR-2400 showed opposite effects compared to those of bta-miR-2400 overexpression in yak preadipocytes. Further, luciferase reporter assays revealed that SUMO1 is a target gene of bta-miR-2400, with bta-miR-2400 being able to down-regulate SUMO1 mRNA and protein expression. In conclusion, bta-miR-2400 regulates lipid metabolism and energy homeostasis in yak preadipocytes by directly targeting SUMO1 to promote cell proliferation and inhibit differentiation.
Collapse
|
21
|
Xie Y, Liu Z, Guo J, Su X, Zhao C, Zhang C, Qin Q, Dai D, Zhao Y, Wang Z, Wang R, Zhang Y, Su R, Wang Z, Li J. MicroRNA-mRNA Regulatory Networking Fine-Tunes Polyunsaturated Fatty Acid Synthesis and Metabolism in the Inner Mongolia Cashmere Goat. Front Genet 2021; 12:649015. [PMID: 34149800 PMCID: PMC8206643 DOI: 10.3389/fgene.2021.649015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Fatty acid composition is an important aspect of meat quality in ruminants. Improving the beneficial fatty acid level in cashmere goat meat is important to its economic value. To investigate microRNAs (miRNAs) and mRNAs that regulate or coregulate polyunsaturated fatty acid (PUFA) synthesis and metabolism in the Inner Mongolia cashmere goat, we used longissimus dorsi muscle (WLM) and biceps femoris muscle (WBM) for transcript-level sequencing. RT-qPCR was used to evaluate the expression of mRNAs and miRNAs associated with PUFA synthesis and metabolism. The total PUFA content in the WBM was significantly higher than that in the WLM (P < 0.05). Our study is the first to systematically report miRNAs in cashmere goat meat. At the mRNA level, 20,375 genes were identified. ACSL1, CD36 and TECRL were at the center of a gene regulatory network and contributed significantly to the accumulation and metabolic regulation of fatty acids. At the miRNA level, 426 known miRNAs and 30 novel miRNAs were identified. KEGG analysis revealed that the miRNA target genes were involved mainly in the PPAR signaling pathway. The mRNA-miRNA coregulation analysis showed that ACSL1 was negatively targeted by nine miRNAs: chi-miR-10a-5p, chi-miR-10b-5p, chi-miR-130b-5p, chi-miR-15a-5p_R-1, chi-miR-15b-5p, chi-miR-16a-5p, chi-miR-16b-5p, chi-miR-181c-5p_R+1, and chi-miR-26b-5p. Finally, we speculated that the simultaneous silencing of ACSL1 by one or more of these nine miRNAs through PPAR signaling led to low ACSL1 expression in the WLM and, ultimately to high PUFA content in the WBM. Our study helps elucidate the metabolic regulation of fatty acids in Inner Mongolia cashmere goats.
Collapse
Affiliation(s)
- Yuchun Xie
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Zhihong Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Juntao Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Xin Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Cun Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Chongyan Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Qing Qin
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Dongliang Dai
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Zhiying Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Zhixin Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| | - Jinquan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Hohhot, China
- Key Laboratory of Mutton Sheep Genetics and Breeding, Ministry of Agriculture, Hohhot, China
- Engineering Research Center for Goat Genetics and Breeding, Hohhot, China
| |
Collapse
|
22
|
RNA-Seq Reveals Function of Bta-miR-149-5p in the Regulation of Bovine Adipocyte Differentiation. Animals (Basel) 2021; 11:ani11051207. [PMID: 33922274 PMCID: PMC8145242 DOI: 10.3390/ani11051207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Intramuscular fat is a real challenge for the experts of animal science to improve meat quality traits. Research on the mechanism of adipogenesis provides invaluable information for the improvement of meat quality traits. This study investigated the effect of bta-miR-149-5p and its underlying mechanism on lipid metabolism in bovine adipocytes. Bovine adipocytes were differentiated and transfected with bta-miR-149-5p mimics or its negative control (NC). A total of 115 DEGs including 72 upregulated and 43 downregulated genes were identified in bovine adipocytes. The unigenes and GO term biological processes were the most annotated unigene contributor parts at 80.08%, followed by cellular component at 13.4% and molecular function at 6.7%. The KEGG pathways regulated by the DEGs were PI3K-Akt signaling pathway, calcium signaling pathway, pathways in cancer, MAPK signaling pathway, lipid metabolism/metabolic pathway, PPAR signaling pathway, AMPK signaling pathway, TGF-beta signaling pathway, cAMP signaling pathway, cholesterol metabolism, Wnt signaling pathway, and FoxO signaling pathway. In addition to this, the most important reactome enrichment pathways were R-BTA-373813 receptor CXCR2 binding ligands CXCL1 to 7, R-BTA-373791 receptor CXCR1 binding CXCL6 and CXCL8 ligands, R-BTA-210991 basigin interactions, R-BTA-380108 chemokine receptors binding chemokines, R-BTA-445704 calcium binding caldesmon, and R-BTA-5669034 TNFs binding their physiological receptors. Furthermore, the expression trend of the DEGs in these pathways were also exploited. Moreover, the bta-miR-149-5p significantly (p < 0.01) downregulated the mRNA levels of adipogenic marker genes such as CCND2, KLF6, ACSL1, Cdk2, SCD, SIK2, and ZEB1 in bovine adipocytes. In conclusion, our results suggest that bta-miR-149-5p regulates lipid metabolism in bovine adipocytes. The results of this study provide a basis for studying the function and molecular mechanism of the bta-miR-149-5p in regulating bovine adipogenesis.
Collapse
|
23
|
Han F, Zhou L, Zhao L, Wang L, Liu L, Li H, Qiu J, He J, Liu N. Identification of miRNA in Sheep Intramuscular Fat and the Role of miR-193a-5p in Proliferation and Differentiation of 3T3-L1. Front Genet 2021; 12:633295. [PMID: 33936163 PMCID: PMC8083875 DOI: 10.3389/fgene.2021.633295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/25/2021] [Indexed: 12/22/2022] Open
Abstract
Intramuscular fat (IMF) is one of the most critical parameters affecting meat quality and mainly affected by genetic factors. MicroRNA as an important regulatory factor, which is still a lack of research in the development of sheep IMF deposition. We used RNA sequencing (RNA-seq) and cell-level validation to explore the role of miRNA in IMF deposition. As for this purpose, longissimus thoracis et lumborum (LTL) samples of 2 month-old (Mth-2) and 12 months-old (Mth-12) Aohan fine-wool sheep (AFWS) were used to identified miRNAs expression. We found 59 differentially expressed miRNAs (DE-miRNA) between these age groups and predicted their 1,796 target genes. KEGG functional enrichment analysis revealed eight pathways involved in lipid metabolism-related processes, including fatty acid elongation and the AMPK signaling pathway. A highly expressed DE-miRNA, miR-193a-5p, was found to serve a function in 3T3-L1 preadipocyte differentiation. Luciferase assay demonstrated that miR-193a-5p directly binds to the 3′-UTR region of ACAA2. By constructing mimics and inhibitor vector transfecting into 3T3-L1 cells to explore the effect of miR-193a-5p on cell proliferation and differentiation, we demonstrated that overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte proliferation, as evidenced by decreased mRNA and protein expression of CDK4 and CyclinB. CCK-8 assay showed that miR-193a-5p significantly inhibited cell proliferation. Similarly, the overexpression of miR-193a-5p inhibited 3T3-L1 preadipocyte differentiation and adipocyte-specific molecular markers’ expression, leading to a decrease in PPARγ and C/EBPα and ACAA2. Inhibition of miR-193a-5p had the opposite effects. Our study lists the miRNAs associated with intramuscular lipid deposition in sheep and their potential targets, striving to improve sheep meat quality.
Collapse
Affiliation(s)
- Fuhui Han
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lisheng Zhou
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Le Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lei Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lirong Liu
- China Animal Health and Epidemiology Center, Qingdao, China
| | - Haijuan Li
- Aohan Fine Wool Sheep Stud Farm, Chifeng, China
| | - Jixian Qiu
- Runlin Animal Industry Co., Ltd., Linqing, China
| | - Jianning He
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
24
|
Lei Z, Wu H, Xiong Y, Wei D, Wang X, Luoreng Z, Cai X, Ma Y. ncRNAs regulate bovine adipose tissue deposition. Mol Cell Biochem 2021; 476:2837-2845. [PMID: 33730298 DOI: 10.1007/s11010-021-04132-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
Lipid metabolism, which encompasses synthesis and degradation of lipids, is critical for a wide range of cellular functions, including structural and morphological properties of organelles, energy storage, signalling, and the stability and function of membrane proteins. Adipose tissue is a dynamic tissue type that performs a lot of significant physiological functions, including secretion, and is involved in maintaining homeostasis and in regulatory roles of other tissues based on paracrine or endocrine. More recently, several classes of non-coding RNAs (ncRNAs), such as long non-coding RNA (lncRNA), microRNA (miRNA) and circular RNA (circRNA), have been discovered in adipocytes, and they act as critical regulators of gene expression in adipogenesis and regulate adipogenesis through multiple pathways. In the present paper, we discussed several classes of non-coding RNAs and summarized the latest research on the regulatory role of ncRNAs in bovine adipogenesis. We gave examples for known modes of action to look forward to providing reference information future scientific research in cattle breeding.
Collapse
Affiliation(s)
- Zhaoxiong Lei
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Huiguang Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Dawei Wei
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Xingping Wang
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Xiaoyan Cai
- School of Agriculture, Ningxia University, YinChuan, China.,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China
| | - Yun Ma
- School of Agriculture, Ningxia University, YinChuan, China. .,Key Laboratory of Ruminant Molecular and Cellular Breeding, Ningxia University, Ningxia Hui Autonomous Region, YinChuan, China. .,College of Life Science, Xinyang Normal University, Xinyang, China.
| |
Collapse
|
25
|
Chen X, Raza SHA, Ma X, Wang J, Wang X, Liang C, Yang X, Mei C, Suhail SM, Zan L. Bovine Pre-adipocyte Adipogenesis Is Regulated by bta-miR-150 Through mTOR Signaling. Front Genet 2021; 12:636550. [PMID: 33633792 PMCID: PMC7901978 DOI: 10.3389/fgene.2021.636550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Micro RNA (miR) are recognized for their important roles in biological processes, particularly in regulatory componentization. Among the miR, miR-150 has been the focus of intense scrutiny, mostly due to its role in malignant tumors. A comparison between steer and bull adipose tissues identified bta-miR-150 as one of the nine downregulated miRNAs, although its function remains unknown (GEO:GSE75063). The present study aimed to further characterize the role of bta-miR-150 in cattle. bta-miR-150 has a negative regulatory effect on the differentiation of bovine adipocytes and promotes proliferation. Overexpression of bta-miR-150 can promote mRNA and protein expression of the marker genes CDK1, CDK2, and PCNA, increase the number of EdU-stained cells, promote adipocyte proliferation, inhibit adipocyte differentiation, and reduce lipid droplet formation. Results of RNA-seq and WGCNA analyses showed that the mammalian target of the rapamycin signaling pathway, which plays a major regulatory role, is dysregulated by the overexpression and inhibition of miR-150. We found that the target gene of bta-miR-150 is AKT1 and that bta-miR-150 affects AKT1 phosphorylation levels. These results showed that bta-miR-150 plays a role in adipogenic differentiation and might therefore have applications in the beef industry.
Collapse
Affiliation(s)
- Xingyi Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | | | - Xinhao Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangfang Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xiaohui Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chengcheng Liang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Xinran Yang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,National Beef Cattle Improvement Center, Northwest A&F University, Xianyang, China
| |
Collapse
|
26
|
Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes. Animals (Basel) 2020; 10:ani10122362. [PMID: 33321855 PMCID: PMC7763857 DOI: 10.3390/ani10122362] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators involved in adipogenesis, but the specific role of miR-376a in regulation of bovine adipocytes remains unknown. Our findings indicated that miR-376a was a potential negative regulator of bovine adipocyte differentiation. A bta-miR-376a mimic inhibited mRNA and protein expression of the marker genes, CDK1, CDK2, PCNA, C/EBPα, FAS, and PPAR γ, and significantly reduced ratios (%) of S-phase cells, the number of cells stained with 5-ethynyl-2'-deoxyuridine, and adipocyte proliferation. Oil red O staining and triglyceride content analysis also confirmed that bta-miR-376a was involved in adipocyte differentiation. Luciferase activities confirmed that Krüppel-like transcription factor 15 (KLF15) was a direct target gene of bta-miR-376a, and that KLF15 was a key transcription factor in adipogenesis. Therefore, bta-miR-376a might be a target for increasing beef IMF.
Collapse
|
27
|
Greither T, Wenzel C, Jansen J, Kraus M, Wabitsch M, Behre HM. MiR-130a in the adipogenesis of human SGBS preadipocytes and its susceptibility to androgen regulation. Adipocyte 2020; 9:197-205. [PMID: 32272867 PMCID: PMC7153545 DOI: 10.1080/21623945.2020.1750256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objectives: Adipogenesis is the differentiation process generating mature adipocytes from undifferentiated mesenchymal stem cells. The differentiation can be inhibited by androgens, although knowledge about intracellular effectors of this inhibition is scarce. Recently, androgen-regulated microRNAs were detected as interesting candidates in this context. In this study, we analyse the role of miR-130a and miR-301 in the adipogenesis of human SGBS preadipocytes and whether they are prone to androgen regulation. Materials and Methods: microRNA expression during adipogenic differentiation with or without androgen stimulation was measured by qPCR. Putative target genes of miR-130a and miR-301 were identified by target database search and validated in luciferase reporter assays. Results: miR-130a and miR-301 are both significantly downregulated on day 3 and day 5 of adipogenic differentiation in comparison to day 0. Under androgen stimulation, a significant upregulation of miR-130a was detected after 7 days of adipogenesis lasting to day 14, while miR-301 did not change significantly until day 14. Luciferase reporter assays revealed the androgen receptor (AR), adiponectin (ADIPOQ) and tumour necrosis factor alpha (TNFα) as miR-130a target genes. Conclusions: miR-130a is an androgen-regulated microRNA that is downregulated during the early phase of adipogenesis and exerts its functions by regulating AR and ADIPOQ translation. These data may help to identify new signalling pathways associated with the androgen-mediated inhibition of adipogenesis.
Collapse
Affiliation(s)
- Thomas Greither
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carina Wenzel
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Julia Jansen
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Matthias Kraus
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Hermann M. Behre
- Center for Reproductive Medicine and Andrology, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
28
|
Ortho-silicic acid enhances osteogenesis of osteoblasts through the upregulation of miR-130b which directly targets PTEN. Life Sci 2020; 264:118680. [PMID: 33130075 DOI: 10.1016/j.lfs.2020.118680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022]
Abstract
AIMS Osteoporosis is considered a common skeletal disease. Ortho-silicic acid has been found to enhance the osteogenic differentiation of osteoblasts. However, the molecular mechanism of osteogenesis induced by ortho-silicic acid is still undefined totally. MicroRNAs (miRs) play a key role in osteogenesis of osteoblasts. This study investigated the role of miR-130b in promoting osteogenesis induced by ortho-silicic acid. MAIN METHODS AND KEY FINDINGS In this study, we found ortho-silicic acid enhanced osteogenesis of osteoblasts in vitro and promoted preventing and treating osteoporosis in vivo. Furthermore, the expression of miR-130b increased under application of ortho-silicic acid. In vitro, experiments demonstrated miR-130b overexpression or inhibition significantly promoted or suppressed osteogenic differentiation of osteoblasts under application of ortho-silicic acid, respectively. Consistently, downregulation of miR-130b in ovariectomy (OVX) rats dropped off the beneficial effect of ortho-silicic acid against bone loss. Mechanistically, we identified phosphatase and tensin homologue deleted on human chromosome 10 (PTEN) as the direct target of miR-130b during osteogenesis induced by ortho-silicic acid. SIGNIFICANCE In conclusion, our findings reveal that ortho-silicic acid promotes the osteogenesis of osteoblasts mediated by the miR-130b/PTEN signaling axis, which identifies a new target to prevent and treat osteoporosis.
Collapse
|
29
|
Wang L, Zhang S, Cheng G, Mei C, Li S, Zhang W, Junjvlieke Z, Zan L. MiR-145 reduces the activity of PI3K/Akt and MAPK signaling pathways and inhibits adipogenesis in bovine preadipocytes. Genomics 2020; 112:2688-2694. [DOI: 10.1016/j.ygeno.2020.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/31/2020] [Accepted: 02/29/2020] [Indexed: 12/29/2022]
|
30
|
Raza SHA, Kaster N, Khan R, Abdelnour SA, El-Hack MEA, Khafaga AF, Taha A, Ohran H, Swelum AA, Schreurs NM, Zan L. The Role of MicroRNAs in Muscle Tissue Development in Beef Cattle. Genes (Basel) 2020; 11:genes11030295. [PMID: 32168744 PMCID: PMC7140828 DOI: 10.3390/genes11030295] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
In this review, we highlight information on microRNA (miRNA) identification and functional characterization in the beef for muscle and carcass composition traits, with an emphasis on Qinchuan beef cattle, and discuss the current challenges and future directions for the use of miRNA as a biomarker in cattle for breeding programs to improve meat quality and carcass traits. MicroRNAs are endogenous and non-coding RNA that have the function of making post-transcriptional modifications during the process of preadipocyte differentiation in mammals. Many studies claim that diverse miRNAs have an impact on adipogenesis. Furthermore, their target genes are associated with every phase of adipocyte differentiation. It has been confirmed that, during adipogenesis, several miRNAs are differentially expressed, including miR-204, miR-224, and miR-33. The development of mammalian skeletal muscle is sequentially controlled by somite commitment into progenitor cells, followed by their fusion and migration, the proliferation of myoblasts, and final modification into fast- and slow-twitch muscle fibers. It has been reported that miRNA in the bovine MEG3-DIO3 locus has a regulatory function for myoblast differentiation. Likewise, miR-224 has been associated with controlling the differentiation of bovine adipocytes by targeting lipoprotein lipase. Through the posttranscriptional downregulation of KLF6, miR-148a-3p disrupts the proliferation of bovine myoblasts and stimulates apoptosis while the miR-23a~27a~24-2 cluster represses adipogenesis. Additional to influences on muscle and fat, bta-mir-182, bta-mir-183, and bta-mir-338 represent regulators of proteolysis in muscle, which influences meat tenderness.
Collapse
Affiliation(s)
- Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
| | - Sameh A. Abdelnour
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Mohamed E. Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Ayman Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt;
| | - Husein Ohran
- Department of Physiology, University of Sarajevo, Veterinary Faculty, Zmaja od Bosne 90, 71 000 Sarajevo, Bosnia and Herzegovina;
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Nicola M. Schreurs
- Animal Science, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand;
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China; (S.H.A.R.); (N.K.); (R.K.)
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
- Correspondence: ; Tel.: +86-2987-091-923
| |
Collapse
|
31
|
Wang L, Zhang S, Zhang W, Cheng G, Khan R, Junjvlieke Z, Li S, Zan L. miR-424 Promotes Bovine Adipogenesis Through an Unconventional Post-Transcriptional Regulation of STK11. Front Genet 2020; 11:145. [PMID: 32194625 PMCID: PMC7064614 DOI: 10.3389/fgene.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Adipose tissue is the largest energy reservoir and secretory organ in the animal body, and is essential for maintaining normal physiological functions and metabolic balance. MicroRNAs regulate the process of adipogenic differentiation through post-transcriptional regulatory mechanisms. In the present study, miR-424 was upregulated during bovine adipocyte differentiation both in vivo and in vitro. The overexpression and interference of miR-424 exhibited the positive regulatory role in the differentiation of bovine adipocytes. Furthermore, miR-424 directly binds to the three prime untranslated region (3' UTR) of serine/threonine kinase 11 (STK11, also called LKB1), a master upstream gene in the AMP-activated protein kinase (AMPK) cascade, and up-regulates its expression. Functional studies showed that the knockdown of STK11 attenuated the pro-adipogenic effect of miR-424. Post-transcriptional regulation of STK11 by miR-424 was mediated potentially in an RNA binding protein (RBP) binding site-dependent manner. In conclusion, our study shows that miR-424 promotes bovine adipogenesis through an unconventional post-transcriptional regulation of STK11, which may serve as a potential target for the regulation of bovine adipogenesis and the improvement of livestock breeding efficiency.
Collapse
Affiliation(s)
- Li Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Song Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenzhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shijun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Xu Q, Wang Y, Zhang Y, Zhu J, Lin Y. RXRα cooperates with KLF8 to promote the differentiation of intramuscular preadipocytes in goat. Anim Biotechnol 2020; 32:580-590. [DOI: 10.1080/10495398.2020.1732397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Qing Xu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yanan Zhang
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yaqiu Lin
- School of Life Science and Technology, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education/Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Modern Biotechnology of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, China
| |
Collapse
|
33
|
Ding C, Bi H, Wang D, Kang M, Tian Z, Zhang Y, Wang H, Zhu T, Ma J. Preparation of Chitosan/Alginate-ellagic Acid Sustained-release Microspheres and their Inhibition of Preadipocyte Adipogenic Differentiation. Curr Pharm Biotechnol 2020; 20:1213-1222. [PMID: 31762423 DOI: 10.2174/1389201020666190809110511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/05/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE In this study, chitosan/alginate-ellagic acid sustained-release microspheres were prepared, and the effect of sustained-release microspheres on preadipocyte adipogenic differentiation was analyzed. METHODS Chitosan/alginate-ellagic acid microspheres were prepared and identified by scanning electron microscopy (SEM) and infrared spectroscopy (IR). The drug release rates were measured at pH 6.8, 7.0, 7.2, 7.4 to determine sustained release of ellagic acid from microspheres. The effects of 0.1, 1, 10 mg/L chitosan/alginate-ellagic acid microsphere on 3T3-F442A preadipocyte proliferation were determined by Methyl thiazolyl tetrazolium assay (MTT), and cell morphology was checked by hematoxylin/ eosin staining (HE staining). The effect of chitosan/alginate-ellagic acid microspheres on preadipocyte adipogenic differentiation was also determined by Oil red O staining, and lipogenesis was measured by isopropanol extraction. The molecular mechanism was investigated by detecting the mRNA expression of CCAAT/enhancer binding protein alpha (C/EBPα) and peroxisome proliferatorsactivated receptor gamma (PPARγ). RESULTS Chitosan/alginate-ellagic acid sustained-release microspheres were successfully prepared, and the inhibition of proliferation and adipogenic differentiation of preadipocytes was found to be dosedependent. The mechanism of differentiation inhibition was found to be closely related to the expression of transcription factor C/EBPα and PPARγ. CONCLUSION Chitosan/alginate can be used as a good material to prepare ellagic acid sustained-release microspheres, and these microspheres can be used for treating the obesity.
Collapse
Affiliation(s)
- Chengshi Ding
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.,Tianjin Institute of Environmental Medicine & Operational Medicine, Tianjin 300050, China
| | - Haidan Bi
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang 277160, China
| | - Deya Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Meiling Kang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Zhongjing Tian
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Yingxia Zhang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Hongkai Wang
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Tianshun Zhu
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China
| | - Jing Ma
- College of Life Science, Zaozhuang University, Zaozhuang 277160, China.,Basic Medical School, Jining Medical College, Jining 272067, China
| |
Collapse
|
34
|
Khan R, Raza SHA, Junjvlieke Z, Wang X, Wang H, Cheng G, Mei C, Elsaeid Elnour I, Zan L. Bta-miR-149-5p inhibits proliferation and differentiation of bovine adipocytes through targeting CRTCs at both transcriptional and posttranscriptional levels. J Cell Physiol 2020; 235:5796-5810. [PMID: 32003022 DOI: 10.1002/jcp.29513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small, single stranded, and noncoding RNAs that have been proven to be potent regulators of adipogenesis. However, the role of bta-miR-149-5p in regulating bovine adipogenesis is still unclear. Expression profiling in different stages of adipogenesis revealed that bta-miR-149-5p was enriched in the proliferation stage, and also on Day 9 of differentiation in bovine adipocytes. Our gain of function study showed that bta-miR-149-5p can negatively regulate both bovine adipocyte proliferation and differentiation. Overexpression of bta-miR-149-5p suppressed the expression of proliferation marker genes at both the messenger RNA (mRNA) and protein levels, markedly decreased the percentage of S-phase cells, decreased the number of EdU-stained cells, and substantially reduced adipocyte proliferation vitality in the cell count assay. Collectively, these findings elucidated that bta-miR-149-5p inhibits adipocyte proliferation. Furthermore, overexpression of bta-miR-149-5p also suppressed the expression of adipogenic genes at both the mRNA and protein levels, inhibited lipid accumulation, and reduced the secretion of adiponectin in bovine adipocytes. Furthermore, a luciferase activity assay explored how bta-miR-149-5p targeted CRTCs (CRTC1 and CRTC2) directly. This targeting was further validated by the mRNA and protein level expression of CRTC1 and CRTC2, which were down regulated by bta-miR-149-5p overexpression. Moreover, bta-miR-149-5p indirectly targeted CRTC1 and CRTC2 through regulating their key transcription factors. Overexpression of bta-miR-149-5p suppressed the expression of SMAD3, while enriched the expression of NRF1, which are the key transcription factors and proven regulators of CRTC1. Overexpression of bta-miR-149-5p also repressed the expression of C/EBPγ, XBP1, INSM1, and ZNF263, which are the key regulators of CRTCs, at both the mRNA and protein levels. These findings suggest that bta-miR-149-5p is a negative regulator of CRTC1 and CRTC2 both at transcriptional and posttranscriptional level. Taken together, these findings suggest that bta-miR-149-5p can regulate adipogenesis, which implies that bta-miR-149-5p could be a target for increasing intramuscular fat in beef cattle.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Zainaguli Junjvlieke
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Xiaoyu Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Ibrahim Elsaeid Elnour
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Yangling, China.,National Beef Cattle Improvement Research Center, Xianyang, Yangling, China
| |
Collapse
|
35
|
Chen Z, Chu S, Liang Y, Xu T, Sun Y, Li M, Zhang H, Wang X, Mao Y, Loor JJ, Wu Y, Yang Z. miR-497 regulates fatty acid synthesis via LATS2 in bovine mammary epithelial cells. Food Funct 2020; 11:8625-8636. [DOI: 10.1039/d0fo00952k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both mRNA and miRNA play an important role in the regulation of mammary fatty acid metabolism and milk fat synthesis.
Collapse
|