1
|
Li X, Wu T, Dong R, Wu X. The prognosis of ciRS-7 and circHIPK3 in pan-cancer: a mini-review and meta-analysis. Discov Oncol 2025; 16:207. [PMID: 39969753 PMCID: PMC11839969 DOI: 10.1007/s12672-025-01944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) are increasingly recognized for their potential as cancer biomarkers. Although various studies have investigated the biological function of ciRS-7 and circHIPK3 in malignant tumors, their prognostic value in pan-cancer has not been systematically analyzed. METHODS We systematically searched the PubMed, Web of Science, and Cochrane Library databases from January 1, 1990, to October 14, 2024. The impact of ciRS-7 or circHIPK3 on prognostic outcomes, including overall survival (OS) and disease-free survival (DFS), was assessed by pooled hazard ratios (HR). The association between CiRS-7 or circHIPK3 and clinical features was evaluated using odds ratios (OR). The Data analysis was conducted using Review Manager 5.4. RESULTS For most cancers, our meta-analysis of 14 studies (N = 2140) and 15 studies (N = 1045) showed that high ciRS-7 and circHIPK3 were associated with worse OS. Pooled analysis of 5 studies (N = 421) and 2 studies (N = 248) indicated that high ciRS-7 and circHIPK3 were also associated with shorter DFS. Additionally, high ciRS-7 and circHIPK3 expression were associated with worse histological grade, higher TNM stage, larger tumor size, more lymph node and distant metastasis. CONCLUSION High ciRS-7 and circHIPK3 were significantly associated with poor prognosis and advanced clinical features in most cancers, suggesting their potential as prognostic biomarkers.
Collapse
Affiliation(s)
- Xiangji Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, State Key Laboratory for Digestive Health, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, 100050, People's Republic of China
| | - Tong Wu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Ruihan Dong
- Department of Nursing, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Xiaoying Wu
- Department of Endocrinology, Peking University Fifth School of Clinical Medicine, Beijing Hospital, National Center of Gerontology, Beijing, 100005, People's Republic of China.
| |
Collapse
|
2
|
Siedlecki E, Remiszewski P, Stec R. The Role of circHIPK3 in Tumorigenesis and Its Potential as a Biomarker in Lung Cancer. Cells 2024; 13:1483. [PMID: 39273053 PMCID: PMC11393915 DOI: 10.3390/cells13171483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Lung cancer treatment and detection can be improved by the identification of new biomarkers. Novel approaches in investigating circular RNAs (circRNAs) as biomarkers have yielded promising results. A circRNA molecule circHIPK3 was found to be widely expressed in non-small-cell lung cancer (NSCLC) cells, where it plays a crucial role in lung cancer tumorigenesis. CircHIPK3 promotes lung cancer progression by sponging oncosuppressive miRNAs such as miR-124, miR-381-3p, miR-149, and miR-107, which results in increased cell proliferation, migration, and resistance to therapies. Inhibiting circHIPK3 has been demonstrated to suppress tumour growth and induce apoptosis, which suggests its potential use in the development of new lung cancer treatment strategies targeting circHIPK3-related pathways. As a biomarker, circHIPK3 shows promise for early detection and monitoring of lung cancer. CircHIPK3 increased expression levels in lung cancer cells, and its potential link to metastasis risk highlights its clinical relevance. Given the promising preliminary findings, more clinical trials are needed to validate circHIPK3 efficacy as a biomarker. Moreover, future research should determine if the mechanisms discovered in NSCLC apply to small cell lung cancer (SCLC) to investigate circHIPK3-targeted therapies for SCLC.
Collapse
Affiliation(s)
- Eryk Siedlecki
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Piotr Remiszewski
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Rafał Stec
- Department of Oncology, Medical University of Warsaw, 02-097 Warsaw, Poland; (P.R.); (R.S.)
| |
Collapse
|
3
|
The Diagnostic and Therapeutic Role of Circular RNA HIPK3 in Human Diseases. Diagnostics (Basel) 2022; 12:diagnostics12102469. [PMID: 36292157 PMCID: PMC9601126 DOI: 10.3390/diagnostics12102469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with closed-loop of single-stranded RNA structure. Although most of the circRNAs do not directly encode proteins, emerging evidence suggests that circRNAs play a pivotal and complex role in multiple biological processes by regulating gene expression. As one of the most popular circRNAs, circular homeodomain-interacting protein kinase 3 (circHIPK3) has frequently gained the interest of researchers in recent years. Accumulating studies have demonstrated the significant impacts on the occurrence and development of multiple human diseases including cancers, cardiovascular diseases, diabetes mellitus, inflammatory diseases, and others. The present review aims to provide a detailed description of the functions of circHIPK3 and comprehensively overview the diagnostic and therapeutic value of circHIPK3 in these certain diseases.
Collapse
|
4
|
Zhang J, Ma Y, Zhang Y, Niu S, Chu M, Zhang Z. Angiogenesis is Inhibited by Arsenic Trioxide Through Downregulation of the CircHIPK3/miR-149-5p/FOXO1/VEGF Functional Module in Rheumatoid Arthritis. Front Pharmacol 2021; 12:751667. [PMID: 34776969 PMCID: PMC8579003 DOI: 10.3389/fphar.2021.751667] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is a crucial event in the pathogenesis of rheumatoid arthritis (RA). Arsenic trioxide (ATO, As2O3) has been reported to inhibit synovial angiogenesis via the vascular endothelial growth factor (VEGF)-centered functional module. However, the exact mechanisms of ATO on VEGF modulation remain unclear. Circular RNAs (circRNAs) are emerging as important regulators in RA, and the detailed mechanisms remain largely unknown. Here, we reported a circRNA (circHIPK3), the expression of which was significantly increased in RA fibroblast-like synoviocytes (RA-FLS) after TNF-α induction. Moreover, VEGF content in the supernatants of a RA-FLS and human dermal microvascular endothelial cell (HDMEC) co-culture as well as in RA-FLS co-cultured was significantly elevated in accordance with circHIPK3 levels. This increased VEGF expression may significantly upregulate endothelial tube formation and transwell migration, as well as microvessel sprouting in the ex vivo aortic ring assay. CircHIPK3 was further illustrated to be a sponge for the forkhead box transcription factor O1 (FOXO1)-targeting miR-149-5p, leading to the changing expression of the downstream VEGF. These networked factors mainly form a functional module regulating angiogenesis in RA-FLS, and the expression of this functional module could be significantly downregulated by ATO with a consistently reduced vascularity in vitro. In the collagen-induced arthritis (CIA) mice model, an intra-articular injection of the adeno-associated virus-si-circHIPK3 or ATO was demonstrated to alleviate the synovial VEGF expression and arthritis severity respectively. Thus, we elucidate a previously unknown mechanism between circRNAs and RA, and ATO has a significant protective effect on RA-FLS and CIA synovium via its inhibition of the angiogenic functional module of circHIPK3/miR-149-5p/FOXO1/VEGF, suggesting great potential for the combination therapy of ATO with circHIPK3 silencing.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yeye Ma
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yue Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Sijia Niu
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Maolin Chu
- Department of Urology, The Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Zhiyi Zhang
- Department of Rheumatology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Fu Y, Sun H. Biogenesis, cellular effects, and biomarker value of circHIPK3. Cancer Cell Int 2021; 21:256. [PMID: 33975598 PMCID: PMC8111742 DOI: 10.1186/s12935-021-01956-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Competing endogenous RNAs (ceRNAs) can indirectly regulate gene expression by competitively binding to microRNA(miRNA) through miRNA response elements (MREs) to affect miRNA-induced gene regulation, which is of great biological significance. Among them, circular RNA (circRNA) has become a hotspot due to its highest binding capacity. A specific circRNA discussed in this review, circHIPK3, has been studied for its biological characteristics, function, cellular effects and its relationship with tumors and various diseases. Here, we review the recent researches about circHIPK3 in detail and aim to elucidate accurate conclusions from them. These circHIPK3-miRNAs-mRNA pathways will further advance the application of circHIPK3 in diseases development, early diagnosis and gene targeting therapy.
Collapse
Affiliation(s)
- Yihan Fu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hong Sun
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Zhou J, Wang B, Bin X, Xie C, Li B, Liu O, Tang Z. CircHIPK3: Key Player in Pathophysiology and Potential Diagnostic and Therapeutic Tool. Front Med (Lausanne) 2021; 8:615417. [PMID: 33693013 PMCID: PMC7937734 DOI: 10.3389/fmed.2021.615417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/02/2021] [Indexed: 12/21/2022] Open
Abstract
A large number of studies in China and other countries have confirmed that circularHIPK3 (circHIPK3) plays an important role in the pathophysiological processes of various diseases. Through the action of sponge miRNA (miR), circHIPK3 regulates cell proliferation, differentiation, and migration, and plays a key role in disease processes. By referring to a large number of research reports, this article explores the specific functional role of circHIPK3 in fibrotic diseases, cancer, and other diseases. This review aims to clarify the role of circHIPK3 in disease processes in order to aid further studies into the specific pathogenesis and clinical diagnosis of various diseases and provide new ideas for treatments.
Collapse
Affiliation(s)
- Jiang Zhou
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Baisheng Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Xin Bin
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Changqing Xie
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Bo Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Zhangui Tang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| |
Collapse
|