1
|
Chen J, Liao H, Wang K, Yan T, Ma S, Bai G. AKAP12, mediated by transcription factor 21, inhibits cell proliferation, metastasis, and glycolysis in lung squamous cell carcinoma. Open Life Sci 2025; 20:20220912. [PMID: 40226362 PMCID: PMC11992625 DOI: 10.1515/biol-2022-0912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 04/15/2025] Open
Abstract
A-kinase anchor protein 12 (AKAP12) has been reported to be related to lung squamous cell carcinoma (LUSC) progression. However, its role and molecular mechanisms in LUSC have not been revealed. The mRNA and protein levels of AKAP12 and transcription factor 21 (TCF21) were tested by quantitative real-time PCR and western blot. Cell counting kit 8 assay, EdU assay, flow cytometry, wound healing assay, and transwell assay were used to evaluate cell proliferation, apoptosis, migration, and invasion. Cell glycolysis was measured by testing glucose consumption and lactate production. The interaction between AKAP12 and TCF21 was assessed by ChIP assay and dual-luciferase reporter assay. A mice xenograft model was constructed to explore AKAP12 and TCF21 roles in vivo. Our data showed that AKAP12 was underexpressed in LUSC tissues and cells, and its overexpression inhibited LUSC cell growth, metastasis, and glycolysis. TCF21 had decreased expression in LUSC, which facilitated AKAP12 expression through binding to its promoter region to enhance its transcription. Furthermore, TCF21 increased AKAP12 expression to repress LUSC cell growth, metastasis, and glycolysis. In vivo experiments showed that AKAP12 upregulation reduced LUSC tumorigenesis, and TCF21 knockdown reversed this effect. In conclusion, AKAP12 might be a tumor suppressor in LUSC, which was mediated by TCF21 and could inhibit cell growth, metastasis, and glycolysis to restrain LUSC malignant progression.
Collapse
Affiliation(s)
- Juan Chen
- Department of Respiratory Medicine, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, China
| | - Hehe Liao
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Kaibin Wang
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Tan Yan
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Shaofei Ma
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| | - Guodong Bai
- Department of Oncology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, 712000, Shaanxi, China
| |
Collapse
|
2
|
Wu X, Wei D, Zhou Y, Cao Q, Han G, Han E, Chen Z, Guo Y, Huo W, Wang C, Huang S, Zeng X, Wang X, Mao Z. Pesticide exposures and 10-year atherosclerotic cardiovascular disease risk: Integrated epidemiological and bioinformatics analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136835. [PMID: 39673955 DOI: 10.1016/j.jhazmat.2024.136835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND AND PURPOSE Recent studies link pesticide exposures to cardiovascular disease risk factors. However, research on the combined effects of multiple pesticides on atherosclerotic cardiovascular disease (ASCVD) is limited, particularly in rural areas. Despite advances in toxicogenomics, the mechanisms underlying these effects remain unclear. This study aims to investigate the combined effects and mechanisms of pesticide exposures on ASCVD. METHODS In the cross-sectional study section, 2291 participants were included. Variables were filtered using machine learning models, and associations between mixed exposure to multiple pesticides and ASCVD were explored using environmental mixed exposure models (weighted quartile sum (WQS) regression and quantile-based g-computation (QGC)). In the bioinformatics analysis section, the GEO, CTD, Malacards, and GeneCards databases were used to retrieve target genes for pesticide exposure and atherosclerotic diseases. Enrichment analysis was then performed to identify the biological pathways associated with these genes. RESULTS Three machine models screened 34 pesticides. Single pesticide exposures, such as atrazine, oxadiazon, p,p'-DDE, α-BHC, β-BHC, fenitrothion, malathion, fenitrothion, cypermethrin, cypermethrin, and cypermethrin might increase the 10-year ASCVD risk (all P < 0.05). Total mixed pesticide exposure was positively associated with 10-year ASCVD risk in both the QGC (3.223(2.196, 4.730)) and WQS models (4.642(3.070, 7.020)). Notably, there was a linear relationship between totalQGC (P_overal < 0.001; P_nonlinearity = 0.864) and high 10-year ASCVD risk. In toxicogenomic bioinformatics analysis, we identified 112 potential atherosclerosis target genes affected by pesticide exposure. Pathway enrichment analysis suggests pesticide-induced atherosclerosis is linked to pathways such as metabolic pathways, lipid metabolism, MAPK, AMPK, FoxO signaling, apoptosis, fluid shear stress, endocrine resistance, TNF, and PI3K-Akt. Key genes were identified based on maximal clique centrality, including AKT1, TP53, IL6, BCL2, TNF, JUN, PTGS2, CASP3, MAPK3, and CASP9. CONCLUSION Individual and combined exposure to pesticides increased the 10-year ASCVD risk, especially in patients with T2DM. Mixed levels of pesticide exposure were linearly and positively associated with high 10-year ASCVD risk. The mechanism of atherogenesis by mixed pesticide exposure may involve pathways such as lipid metabolism, MAPK, AMPK, FoxO signaling, apoptosis, fluid shear stress, endocrine resistance, TNF, and PI3K-Akt.
Collapse
Affiliation(s)
- Xueyan Wu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yilin Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Cao
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Guozhen Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Erbao Han
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhiwei Chen
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yao Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shan Huang
- Henan Institute of Food and Salt Industry Inspection Technology, Zhengzhou, Henan, PR China
| | - Xin Zeng
- School of Public Health, Zhengzhou University, Henan, PR China
| | - Xinlu Wang
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Henan Province, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
3
|
Mou K, Wang H, Zhu S, Luo J, Wang J, Peng L, Lei Y, Zhang Y, Huang S, Zhao H, Li G, Xiang L, Luo Y. Comprehensive analysis of the prognostic and immunological role of cavins in non-small cell lung cancer. BMC Cancer 2024; 24:1525. [PMID: 39695458 DOI: 10.1186/s12885-024-13280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer. However, the expression and prognostic value of cavins in non-small cell lung cancer (NSCLC) remain unexplored. In this study, the expression, survival data, immune infiltration, and functional enrichment of cavins in patients with NSCLC were investigated using multiple databases. Furthermore, different subtypes of cavin-binding proteins were identified through protein-protein interaction networks and k-means clustering. The results showed that the expression of Cavin-1-3 in NSCLC tissues was significantly lower than that in normal tissues, and that Cavin-2 is the major subtype of cavin that inhibits NSCLC progression. It regulates downstream signaling pathways, modulates the infiltration of immune cells and influences the prognosis of NSCLC. Related experiments also confirmed that Cavin-2 promotes the proliferation and metastasis of NSCLC cells. These findings suggest that cavins and their binding proteins may be novel biomarkers for NSCLC prognosis and immunotherapy, providing new treatment options for NSCLC.
Collapse
Affiliation(s)
- Kelin Mou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huan Wang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Siqi Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Luo
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianmei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin Peng
- Department of Bone and Joint, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yulin Lei
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yunke Zhang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shike Huang
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Huarong Zhao
- Department of Oncology, Hejiang County People's Hospital, Luzhou, China
| | - Gang Li
- Department of Oncology, Luzhou People's Hospital, Luzhou, China
| | - Li Xiang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| | - Yuhao Luo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
4
|
Chen C, Li T, Li Y, Chen Z, Shi P, Li Y, Qian S. GPX4 is a potential diagnostic and therapeutic biomarker associated with diffuse large B lymphoma cell proliferation and B cell immune infiltration. Heliyon 2024; 10:e24857. [PMID: 38333875 PMCID: PMC10850411 DOI: 10.1016/j.heliyon.2024.e24857] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024] Open
Abstract
At present, GPX4's role in the occurrence and development of diffuse large B lymphoma (DLBCL) is rarely reported. This study's purpose is to explore GPX4's significance in the diagnosis, treatment, and pathological mechanisms of DLBCL. The TIMER 2.0, GEPIA, and GEO databases were used to analyze GPX4's expression levels in DLBCL tissue, peripheral blood, and single cells, and evaluate its potential performance as a therapeutic and diagnostic marker. Cell experiments validate GPX4's role in DLBCL cells. And revealed the potential mechanism of GPX4's action from three aspects: immunity, pathogenic gene expression, and protein interaction. The results indicate that GPX4 can be used as a biomarker for treatment and diagnosis (FC > 1.5, P < 0.05, AUC>0.8, KM-P value < 0.05). In single cell data, GPX4 also showed high expression in immune cells. Besides, cell experiments have confirmed that GPX4's high expression can inhibit DLBCL cells' proliferation. Meanwhile, we found a negative correlation between GPX4 and the 16 core DLBCL's pathogenic genes, and a significant negative correlation with immune B cell infiltration. In summary, GPX4 can serve as a potential therapeutic and diagnostic marker for DLBCL. GPX4's high expression can lead to a good prognosis in DLBCL patients, which may be related to its inhibition of cancer cell proliferation, high expression of key pathogenic genes, and infiltration of immune B cells.
Collapse
Affiliation(s)
- Can Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - TongYu Li
- Department of Hematology, Ningbo First Hospital, Ningbo, China
| | - Yiwei Li
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Pengfei Shi
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| | - Yun Li
- Team of Neonatal & Infant Development, Health and Nutrition, NDHN, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
- Kindstar Global Precision Medicine Institute, Wuhan, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Wuhan, China
| | - Shenxian Qian
- Department of Hematology, Affiliated Hangzhou First People's Hospital, West Lake University, School of Medicine, Hangzhou, China
| |
Collapse
|