1
|
Chen KY, Qureshi AI, Baskett WI, Shyu CR. Better Blood Pressure Control for Stroke Patients in the ICU: A Deep Reinforcement Learning with Supervised Guidance Approach for Adaptive Infusion Rate Tuning. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2025; 2024:271-280. [PMID: 40417491 PMCID: PMC12099418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
Blood pressure variability (BPV) plays a critical role in vascular diseases, particularly in acute ischemic stroke patients in intensive care units (ICUs), where higher BPV correlates with increased mortality rates. Current interventions lack effective methods for controlling BPV across consecutive time windows. To addressing this gap, we propose an offline deep reinforcement learning approach with supervised guidance to regulate systolic BPV in the following consecutive time windows by optimizing intravenous nicardipine infusion rates for intracerebral hemorrhage patients. Using clinically inspired reward functions, our method aims to tailor antihypertensive medication management within the critical 24-hour recovery window. Compared to human performance, our best method showed 57.52% and 126.01% improvements over the human baseline for maintaining BP within the desired range for the next time window and across two consecutive time windows. This research promises streamlined antihypertensive medication dosing, offering potential just-in-time adaptive interventions through automated pumps during stroke patients' ICU stays.
Collapse
Affiliation(s)
- Kun-Yi Chen
- Institute for Data Science and Informatics University of Missouri, Columbia, MO, USA
| | - Adnan I Qureshi
- Department of Neurology University of Missouri, Columbia, MO, USA
| | - William I Baskett
- Institute for Data Science and Informatics University of Missouri, Columbia, MO, USA
| | - Chi-Ren Shyu
- Institute for Data Science and Informatics University of Missouri, Columbia, MO, USA
- Department of Electrical Engineering and Computer Science University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Stamate E, Piraianu AI, Ciobotaru OR, Crassas R, Duca O, Fulga A, Grigore I, Vintila V, Fulga I, Ciobotaru OC. Revolutionizing Cardiology through Artificial Intelligence-Big Data from Proactive Prevention to Precise Diagnostics and Cutting-Edge Treatment-A Comprehensive Review of the Past 5 Years. Diagnostics (Basel) 2024; 14:1103. [PMID: 38893630 PMCID: PMC11172021 DOI: 10.3390/diagnostics14111103] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) can radically change almost every aspect of the human experience. In the medical field, there are numerous applications of AI and subsequently, in a relatively short time, significant progress has been made. Cardiology is not immune to this trend, this fact being supported by the exponential increase in the number of publications in which the algorithms play an important role in data analysis, pattern discovery, identification of anomalies, and therapeutic decision making. Furthermore, with technological development, there have appeared new models of machine learning (ML) and deep learning (DP) that are capable of exploring various applications of AI in cardiology, including areas such as prevention, cardiovascular imaging, electrophysiology, interventional cardiology, and many others. In this sense, the present article aims to provide a general vision of the current state of AI use in cardiology. RESULTS We identified and included a subset of 200 papers directly relevant to the current research covering a wide range of applications. Thus, this paper presents AI applications in cardiovascular imaging, arithmology, clinical or emergency cardiology, cardiovascular prevention, and interventional procedures in a summarized manner. Recent studies from the highly scientific literature demonstrate the feasibility and advantages of using AI in different branches of cardiology. CONCLUSIONS The integration of AI in cardiology offers promising perspectives for increasing accuracy by decreasing the error rate and increasing efficiency in cardiovascular practice. From predicting the risk of sudden death or the ability to respond to cardiac resynchronization therapy to the diagnosis of pulmonary embolism or the early detection of valvular diseases, AI algorithms have shown their potential to mitigate human error and provide feasible solutions. At the same time, limits imposed by the small samples studied are highlighted alongside the challenges presented by ethical implementation; these relate to legal implications regarding responsibility and decision making processes, ensuring patient confidentiality and data security. All these constitute future research directions that will allow the integration of AI in the progress of cardiology.
Collapse
Affiliation(s)
- Elena Stamate
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Alin-Ionut Piraianu
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
| | - Oana Roxana Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| | - Rodica Crassas
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Oana Duca
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Ana Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Ionica Grigore
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Emergency County Hospital Braila, 810325 Braila, Romania;
| | - Vlad Vintila
- Department of Cardiology, Emergency University Hospital of Bucharest, 050098 Bucharest, Romania; (E.S.); (V.V.)
- Clinical Department of Cardio-Thoracic Pathology, University of Medicine and Pharmacy “Carol Davila” Bucharest, 37 Dionisie Lupu Street, 4192910 Bucharest, Romania
| | - Iuliu Fulga
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Saint Apostle Andrew Emergency County Clinical Hospital, 177 Brailei Street, 800578 Galati, Romania
| | - Octavian Catalin Ciobotaru
- Faculty of Medicine and Pharmacy, University “Dunarea de Jos” of Galati, 35 AI Cuza Street, 800010 Galati, Romania; (O.D.); (A.F.); (I.G.); (I.F.); (O.C.C.)
- Railway Hospital Galati, 800223 Galati, Romania
| |
Collapse
|
3
|
Layton AT. AI, Machine Learning, and ChatGPT in Hypertension. Hypertension 2024; 81:709-716. [PMID: 38380541 DOI: 10.1161/hypertensionaha.124.19468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Hypertension, a leading cause of cardiovascular disease and premature death, remains incompletely understood despite extensive research. Indeed, even though numerous drugs are available, achieving adequate blood pressure control remains a challenge, prompting recent interest in artificial intelligence. To promote the use of machine learning in cardiovascular medicine, this review provides a brief introduction to machine learning and reviews its notable applications in hypertension management and research, such as disease diagnosis and prognosis, treatment decisions, and omics data analysis. The challenges and limitations associated with data-driven predictive techniques are also discussed. The goal of this review is to raise awareness and encourage the hypertension research community to consider machine learning as a key component in developing innovative diagnostic and therapeutic tools for hypertension. By integrating traditional cardiovascular risk factors with genomics, socioeconomic, behavioral, and environmental factors, machine learning may aid in the development of precise risk prediction models and personalized treatment approaches for patients with hypertension.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Ontario, Canada
| |
Collapse
|