1
|
Bequet E, Salée C, Bletard N, Massot C, Fonzé F, Sarter H, Ley D, Colinet S, Delvenne P, Louis E, Vieujean S, Meuwis MA. Distribution of epithelial endoplasmic reticulum stress-related proteins in adult and pediatric Crohn's disease: Association with inflammation and fibrosis. Dig Liver Dis 2025:S1590-8658(25)00326-3. [PMID: 40300947 DOI: 10.1016/j.dld.2025.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/05/2025] [Accepted: 04/06/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND/AIMS Intestinal strictures in Crohn's disease (CD), driven by fibrosis remain challenging to treat. Current treatments focus on inflammation, but are less effective against fibrosis. Endoplasmic Reticulum Stress-Related Proteins, including Protein disulfide isomerases (PDIs), may contribute to fibrosis; their roles in CD remain unclear. This study investigated the distribution of AGR2, BiP, PDIA6, ERP44 in intestinal epithelium and their association with fibrosis and inflammation in pediatric and adult CD. METHODS We retrospectively analyzed 224 patients (2009-2023). CD patients with and without strictures, non IBD controls, and ulcerative colitis patients were compared. Immunohistochemistry assessed Endoplasmic Reticulum Stress-Related protein distribution in epithelium. H&E and Masson's trichrome staining evaluated inflammation and fibrosis. Correlations between protein distribution, inflammation and fibrosis were examined. RESULTS AGR2 and BiP were increased in fibro-inflammatory and fibrotic intestinal epithelial tissues, especially in pediatric-onset CD. ERP44 was associated with fibrosis exclusively in pediatric CD. PDIA6 was upregulated in CD compared to non IBD, without fibrosis association. Distinct protein distribution patterns were observed between pediatric and adult CD, and between ileum and colon. CONCLUSIONS Distinct patterns of AGR2, BiP, PDIA6, and ERP44 in fibrotic and inflammatory intestinal tissues suggest potential roles in CD-associated fibrosis, warranting exploration as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- E Bequet
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University Hospital Liège & University of Liège, Belgium; Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.
| | - C Salée
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - N Bletard
- Department of Pathology, University Hospital Liège, Belgium
| | - C Massot
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - F Fonzé
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - H Sarter
- Public Health, Epidemiology and Economic Health, EPIMAD Registry, Regional house of clinical research, F-59000 Lille University and Hospital, Lille, France
| | - D Ley
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France; Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHU Lille, F-59000 Lille, France
| | - S Colinet
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, CHC MontLégia, Liège, Belgium
| | - P Delvenne
- Department of Pathology, University Hospital Liège, Belgium
| | - E Louis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium
| | - S Vieujean
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium; Department of Gastroenterology, INFINY Institute, INSERM NGERE, CHRU Nancy, F-54500 Vandœuvre-lès-Nancy, France
| | - M-A Meuwis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium; Hepato-Gastroenterology and Digestive Oncology Department, University Hospital Liège, Belgium
| |
Collapse
|
2
|
Dabsan S, Twito G, Biadsy S, Igbaria A. Less is better: various means to reduce protein load in the endoplasmic reticulum. FEBS J 2025; 292:976-989. [PMID: 38865586 PMCID: PMC11880973 DOI: 10.1111/febs.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
The endoplasmic reticulum (ER) is an important organelle that controls the intracellular and extracellular environments. The ER is responsible for folding almost one-third of the total protein population in the eukaryotic cell. Disruption of ER-protein folding is associated with numerous human diseases, including metabolic disorders, neurodegenerative diseases, and cancer. During ER perturbations, the cells deploy various mechanisms to increase the ER-folding capacity and reduce ER-protein load by minimizing the number of substrates entering the ER to regain homeostasis. These mechanisms include signaling pathways, degradation mechanisms, and other processes that mediate the reflux of ER content to the cytosol. In this review, we will discuss the recent discoveries of five different ER quality control mechanisms, including the unfolded protein response (UPR), ER-associated-degradation (ERAD), pre-emptive quality control, ER-phagy and ER to cytosol signaling (ERCYS). We will discuss the roles of these processes in decreasing ER-protein load and inter-mechanism crosstalk.
Collapse
Affiliation(s)
- Salam Dabsan
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Gal Twito
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Suma Biadsy
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| | - Aeid Igbaria
- Department of Life SciencesBen‐Gurion University of the NegevBeer ShevaIsrael
| |
Collapse
|
3
|
Martisova A, Faktor J, Sosolikova T, Klemesova I, Kolarova T, Holcakova J, Hrstka R. Characterization of the AGR2-NPM3 axis uncovers the AGR2 involvement in PD-L1 regulation in colorectal cancer. Sci Rep 2024; 14:21926. [PMID: 39300184 PMCID: PMC11413233 DOI: 10.1038/s41598-024-72990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Despite extensive research, the molecular role of AGR2 in the progression and metastasis of colorectal cancer (CRC) has not been fully characterized. We used quantitative mass spectrometry (SWATH MS) to identify differentially expressed proteins in paired CRC cell models of the SW480 and SW620 cell lines in response to AGR2 protein level manipulation. Relying on the results from SWATH MS and subsequent immunochemical validation, we selected NMP3 as the top candidate protein associated with AGR2 in CRC tumour cells in our screen. RT‒qPCR and immunochemical analysis confirmed the involvement of AGR2-mediated regulation of NPM3 at the transcriptional and posttranscriptional levels. Since PD-L1 is a constituent of the NPM3 regulatory axis, we aimed to correlate the changes in PD-L1 to the differential expression of AGR2 in our cell models. We found that AGR2 positively regulates PD-L1 levels in both SW480 and SW620 cell lines; additionally, several different CRC patient transcriptome cohorts confirmed the association of AGR2 with PD-L1. Our work reveals a new AGR2-NPM3 regulatory axis and the involvement of AGR2 in the regulation of PD-L1, which paves the way for the association of AGR2 with immune evasion in CRC cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Jakub Faktor
- International Centre for Cancer Vaccine Science, University of Gdansk, Kladki 24, Gdansk, 80-822, Poland
| | - Tereza Sosolikova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
- Department of Experimental Biology, Faculty of Science, 117204 Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Iveta Klemesova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Tamara Kolarova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Jitka Holcakova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, Brno, 65653, Czech Republic.
| |
Collapse
|
4
|
Qu S, Jia W, Nie Y, Shi W, Chen C, Zhao Z, Song W. AGR2: The Covert Driver and New Dawn of Hepatobiliary and Pancreatic Cancer Treatment. Biomolecules 2024; 14:743. [PMID: 39062458 PMCID: PMC11275012 DOI: 10.3390/biom14070743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The anterior gradient protein 2 (AGR2) plays a crucial role in facilitating the formation of protein disulfide bonds within the endoplasmic reticulum (ER). Research suggests that AGR2 can function as an oncogene, with its heightened expression linked to the advancement of hepatobiliary and pancreatic cancers through invasion and metastasis. Notably, AGR2 not only serves as a pro-oncogenic agent but also as a downstream targeting protein, indirectly fostering cancer progression. This comprehensive review delves into the established functions and expression patterns of AGR2, emphasizing its pivotal role in cancer progression, particularly in hepatobiliary and pancreatic malignancies. Furthermore, AGR2 emerges as a potential cancer prognostic marker and a promising target for immunotherapy, offering novel avenues for the treatment of hepatobiliary and pancreatic cancers and enhancing patient outcomes.
Collapse
Affiliation(s)
- Shen Qu
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Weili Jia
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Ye Nie
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wen Shi
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Chao Chen
- Xi’an Medical University, Xi’an 710021, China; (S.Q.); (W.J.); (W.S.); (C.C.)
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Zihao Zhao
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Y.N.); (Z.Z.)
| |
Collapse
|
5
|
Bakambamba K, Di Modugno F, Guilbard M, Le Goupil S, Lhomond S, Pelizzari‐Raymundo D, Avril T, Chevet E, Delom F, Lafont E. Endoplasmic reticulum homeostasis-From molecules to organisms: Report on the 14th International Calreticulin Workshop, Saint Malo, France. J Cell Mol Med 2024; 28:e17840. [PMID: 37409695 PMCID: PMC10902559 DOI: 10.1111/jcmm.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
The Calreticulin Workshop, initiated in 1994 by Marek Michalak in Banff (Alberta, Canada), was first organized to be an informal scientific meeting attended by researchers working on diverse biological questions related to functions associated with the endoplasmic reticulum (ER)-resident lectin-like chaperone and applied to a wide range of biological systems and models. Since then, this workshop has broadened the range of topics to cover all ER-related functions, has become international and has been held in Canada, Chile, Denmark, Italy, Switzerland, UK, USA, Greece and this year in France. Each conference, which is organized every other year (pending world-wide pandemic), generally attracts between 50 and 100 participants, including both early career researchers and international scientific leaders to favour discussions and exchanges. Over the years, the International Calreticulin Workshop has become an important gathering of the calreticulin and ER communities as a whole. The 14th International Calreticulin Workshop occurred from May 9-12 in St-Malo, Brittany, France, and has been highlighted by its rich scientific content and open-minded discussions held in a benevolent atmosphere. The 15th International Calreticulin Workshop will be organized in 2025 in Brussels, Belgium.
Collapse
Affiliation(s)
- Ketsia Bakambamba
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Federico Di Modugno
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Marianne Guilbard
- Inserm U1312, ARTiSt LabUniversity of BordeauxBordeauxFrance
- Thabor TherapeuticsParisFrance
| | - Simon Le Goupil
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Stephanie Lhomond
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Diana Pelizzari‐Raymundo
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Tony Avril
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Eric Chevet
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| | - Frédéric Delom
- Inserm U1312, ARTiSt LabUniversity of BordeauxBordeauxFrance
| | - Elodie Lafont
- Inserm U1242University of RennesRennesFrance
- Centre de Lutte Contre le Cancer Eugène MarquisRennesFrance
| |
Collapse
|
6
|
Salm F, Znalesniak EB, Laskou A, Harder S, Schlüter H, Hoffmann W. Expression Profiling along the Murine Intestine: Different Mucosal Protection Systems and Alterations in Tff1-Deficient Animals. Int J Mol Sci 2023; 24:12684. [PMID: 37628863 PMCID: PMC10454331 DOI: 10.3390/ijms241612684] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).
Collapse
Affiliation(s)
- Franz Salm
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eva B. Znalesniak
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Aikaterini Laskou
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Sönke Harder
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, Diagnostic Center, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
7
|
Zhang K, Li Y, Kong X, Lei C, Yang H, Wang N, Wang Z, Chang H, Xuan L. AGR2: a secreted protein worthy of attention in diagnosis and treatment of breast cancer. Front Oncol 2023; 13:1195885. [PMID: 37197416 PMCID: PMC10183570 DOI: 10.3389/fonc.2023.1195885] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023] Open
Abstract
AGR2 is a secreted protein widely existing in breast. In precancerous lesions, primary tumors and metastatic tumors, the expression of AGR2 is increased, which has aroused our interest. This review introduces the gene and protein structure of AGR2. Its endoplasmic reticulum retention sequence, protein disulfide isomerase active site and multiple protein binding sequences endow AGR2 with diverse functions inside and outside breast cancer cells. This review also enumerates the role of AGR2 in the progress and prognosis of breast cancer, and emphasizes that AGR2 can be a promising biomarker and a target for immunotherapy of breast cancer, providing new ideas for early diagnosis and treatment of breast cancer.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuqi Lei
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huaiyu Yang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nianchang Wang
- Department of Cancer Prevention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Hu Chang
- Administration Office, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Hu Chang, ; Lixue Xuan,
| |
Collapse
|
8
|
Hussein D, Alsereihi R, Salwati AAA, Algehani R, Alhowity A, Al-Hejin AM, Schulten HJ, Baeesa S, Bangash M, Alghamdi F, Cross R, Al Zughaibi T, Saka M, Chaudhary A, Abuzenadah A. The anterior gradient homologue 2 (AGR2) co-localises with the glucose-regulated protein 78 (GRP78) in cancer stem cells, and is critical for the survival and drug resistance of recurrent glioblastoma: in situ and in vitro analyses. Cancer Cell Int 2022; 22:387. [PMID: 36482387 PMCID: PMC9730595 DOI: 10.1186/s12935-022-02814-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastomas (GBs) are characterised as one of the most aggressive primary central nervous system tumours (CNSTs). Single-cell sequencing analysis identified the presence of a highly heterogeneous population of cancer stem cells (CSCs). The proteins anterior gradient homologue 2 (AGR2) and glucose-regulated protein 78 (GRP78) are known to play critical roles in regulating unfolded protein response (UPR) machinery. The UPR machinery influences cell survival, migration, invasion and drug resistance. Hence, we investigated the role of AGR2 in drug-resistant recurrent glioblastoma cells. METHODS Immunofluorescence, biological assessments and whole exome sequencing analyses were completed under in situ and in vitro conditions. Cells were treated with CNSTs clinical/preclinical drugs taxol, cisplatin, irinotecan, MCK8866, etoposide, and temozolomide, then resistant cells were analysed for the expression of AGR2. AGR2 was repressed using single and double siRNA transfections and combined with either temozolomide or irinotecan. RESULTS Genomic and biological characterisations of the AGR2-expressed Jed66_GB and Jed41_GB recurrent glioblastoma tissues and cell lines showed features consistent with glioblastoma. Immunofluorescence data indicated that AGR2 co-localised with the UPR marker GRP78 in both the tissue and their corresponding primary cell lines. AGR2 and GRP78 were highly expressed in glioblastoma CSCs. Following treatment with the aforementioned drugs, all drug-surviving cells showed high expression of AGR2. Prolonged siRNA repression of a particular region in AGR2 exon 2 reduced AGR2 protein expression and led to lower cell densities in both cell lines. Co-treatments using AGR2 exon 2B siRNA in conjunction with temozolomide or irinotecan had partially synergistic effects. The slight reduction of AGR2 expression increased nuclear Caspase-3 activation in both cell lines and caused multinucleation in the Jed66_GB cell line. CONCLUSIONS AGR2 is highly expressed in UPR-active CSCs and drug-resistant GB cells, and its repression leads to apoptosis, via multiple pathways.
Collapse
Affiliation(s)
- Deema Hussein
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Reem Alsereihi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia ,College of Health Sciences, Al-Rayan Colleges, 41411, Madinah AL-Munawarah, Saudi Arabia
| | - Abdulla Ahmed A. Salwati
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Rinad Algehani
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Alazouf Alhowity
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia
| | - Ahmed M. Al-Hejin
- grid.412125.10000 0001 0619 1117Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 80203, Jeddah, 21589 Saudi Arabia
| | - Hans-Juergen Schulten
- grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Saleh Baeesa
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Bangash
- grid.412125.10000 0001 0619 1117Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Fahad Alghamdi
- grid.412125.10000 0001 0619 1117Pathology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Richard Cross
- grid.48815.300000 0001 2153 2936School of Engineering and Sustainable Development, Emerging Technologies Research Centre (EMTERC), De Montfort University, The Gateway, Leicester, LE1 9BH UK
| | - Torki Al Zughaibi
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohamad Saka
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adeel Chaudhary
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Adel Abuzenadah
- grid.412125.10000 0001 0619 1117King Fahd Medical Research Center, King Abdulaziz University, 80216, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia ,grid.412125.10000 0001 0619 1117Centre of Innovation for Personalized Medicine, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
9
|
Jiang H, Thapa P, Hao Y, Ding N, Alshahrani A, Wei Q. Protein Disulfide Isomerases Function as the Missing Link Between Diabetes and Cancer. Antioxid Redox Signal 2022; 37:1191-1205. [PMID: 36000195 PMCID: PMC9805878 DOI: 10.1089/ars.2022.0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/11/2022] [Indexed: 01/13/2023]
Abstract
Significance: Diabetes has long been recognized as an independent risk factor for cancer, but there is insufficient mechanistic understanding of biological mediators that bridge two disorders together. Understanding the pathogenic association between diabetes and cancer has become the focus of many studies, and findings are potentially valuable for the development of effective preventive or therapeutic strategies for both disorders. Recent Advances: A summary of literature reveals a possible connection between diabetes and cancer through the family of protein disulfide isomerase (PDI). Historical as well as the most recent findings on the structure, biochemistry, and biology of the PDI family were summarized in this review. Critical Issues: PDIs in general function as redox enzymes and protein chaperones to control the quality of proteins by correcting or otherwise eliminating misfolded proteins in conditions of oxidative stress and endoplasmic reticulum stress, respectively. However, individual members of the PDI family may contribute uniquely to the pathogenesis of diabetes and cancer. Studies of exemplary members such as protein disulfide isomerase-associated (PDIA) 1, PDIA6, and PDIA15 were reviewed to highlight their contributions in the pathogenesis of diabetes and cancer and how they can be potential links bridging the two disorders through the cross talk of signaling pathways. Future Directions: Apparently ubiquitous presence of the PDIs creates difficulties and challenges for scientific community to develop targeted therapeutics for the treatment of diabetes and cancer simultaneously. Understanding molecular contribution of individual PDI in the context of specific disease may provide some insights into the development of mechanism-based target-directed therapeutics. Antioxid. Redox Signal. 37, 1191-1205.
Collapse
Affiliation(s)
- Hong Jiang
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Pratik Thapa
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yanning Hao
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Na Ding
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Aziza Alshahrani
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Qiou Wei
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Boisteau E, Posseme C, Di Modugno F, Edeline J, Coulouarn C, Hrstka R, Martisova A, Delom F, Treton X, Eriksson LA, Chevet E, Lièvre A, Ogier-Denis E. Anterior gradient proteins in gastrointestinal cancers: from cell biology to pathophysiology. Oncogene 2022; 41:4673-4685. [PMID: 36068336 DOI: 10.1038/s41388-022-02452-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
Most of the organs of the digestive tract comprise secretory epithelia that require specialized molecular machines to achieve their functions. As such anterior gradient (AGR) proteins, which comprise AGR1, AGR2, and AGR3, belong to the protein disulfide isomerase family, and are involved in secretory and transmembrane protein biogenesis in the endoplasmic reticulum. They are generally expressed in epithelial cells with high levels in most of the digestive tract epithelia. To date, the vast majority of the reports concern AGR2, which has been shown to exhibit various subcellular localizations and exert pro-oncogenic functions. AGR2 overexpression has recently been associated with a poor prognosis in digestive cancers. AGR2 is also involved in epithelial homeostasis. Its deletion in mice results in severe diffuse gut inflammation, whereas in inflammatory bowel diseases, the secretion of AGR2 in the extracellular milieu participates in the reshaping of the cellular microenvironment. AGR2 thus plays a key role in inflammation and oncogenesis and may represent a therapeutic target of interest. In this review, we summarize the already known roles and mechanisms of action of the AGR family proteins in digestive diseases, their expression in the healthy digestive tract, and in digestive oncology. At last, we discuss the potential diagnostic and therapeutic implications underlying the biology of AGR proteins.
Collapse
Affiliation(s)
- Emeric Boisteau
- INSERM U1242, University of Rennes, Rennes, France
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France
| | - Céline Posseme
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Federico Di Modugno
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Julien Edeline
- INSERM U1242, University of Rennes, Rennes, France
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | | | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Xavier Treton
- Assistance Publique-Hôpitaux de Paris, University of Paris, Clichy, France
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| | - Eric Chevet
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| | - Astrid Lièvre
- INSERM U1242, University of Rennes, Rennes, France.
- Department of Gastroenterology, University Hospital Pontchaillou, University of Rennes, Rennes, France.
| | - Eric Ogier-Denis
- INSERM U1242, University of Rennes, Rennes, France.
- Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
11
|
Identification of AGR2 Gene-Specific Expression Patterns Associated with Epithelial-Mesenchymal Transition. Int J Mol Sci 2022; 23:ijms231810845. [PMID: 36142758 PMCID: PMC9504245 DOI: 10.3390/ijms231810845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
The TGF-β signaling pathway is involved in numerous cellular processes, and its deregulation may result in cancer development. One of the key processes in tumor progression and metastasis is epithelial to mesenchymal transition (EMT), in which TGF-β signaling plays important roles. Recently, AGR2 was identified as a crucial component of the cellular machinery responsible for maintaining the epithelial phenotype, thereby interfering with the induction of mesenchymal phenotype cells by TGF-β effects in cancer. Here, we performed transcriptomic profiling of A549 lung cancer cells with CRISPR-Cas9 mediated AGR2 knockout with and without TGF-β treatment. We identified significant changes in transcripts associated with focal adhesion and eicosanoid production, in particular arachidonic acid metabolism. Changes in transcripts associated with the focal adhesion pathway were validated by RT-qPCR of COL4A1, COL4A2, FLNA, VAV3, VEGFA, and VINC mRNAs. In addition, immunofluorescence showed the formation of stress fibers and vinculin foci in cells without AGR2 and in response to TGF-β treatment, with synergistic effects observed. These findings imply that both AGR2 downregulation and TGF-β have a role in focal adhesion formation and cancer cell migration and invasion. Transcripts associated with arachidonic acid metabolism were downregulated after both AGR2 knockout and TGF-β treatment and were validated by RT-qPCR of GPX2, PTGS2, and PLA2G4A. Since PGE2 is a product of arachidonic acid metabolism, its lowered concentration in media from AGR2-knockout cells was confirmed by ELISA. Together, our results demonstrate that AGR2 downregulation and TGF-β have an essential role in focal adhesion formation; moreover, we have identified AGR2 as an important component of the arachidonic acid metabolic pathway.
Collapse
|
12
|
Functions and mechanisms of protein disulfide isomerase family in cancer emergence. Cell Biosci 2022; 12:129. [PMID: 35965326 PMCID: PMC9375924 DOI: 10.1186/s13578-022-00868-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is a multi-layered organelle that is essential for the synthesis, folding, and structural maturation of almost one-third of the cellular proteome. It houses several resident proteins for these functions including the 21 members of the protein disulfide isomerase (PDI) family. The signature of proteins belonging to this family is the presence of the thioredoxin domain which mediates the formation, and rearrangement of disulfide bonds of substrate proteins in the ER. This process is crucial not only for the proper folding of ER substrates but also for maintaining a balanced ER proteostasis. The inclusion of new PDI members with a wide variety of structural determinants, size and enzymatic activity has brought additional epitomes of how PDI functions. Notably, some of them do not carry the thioredoxin domain and others have roles outside the ER. This also reflects that PDIs may have specialized functions and their functions are not limited within the ER. Large-scale expression datasets of human clinical samples have identified that the expression of PDI members is elevated in pathophysiological states like cancer. Subsequent functional interrogations using structural, molecular, cellular, and animal models suggest that some PDI members support the survival, progression, and metastasis of several cancer types. Herein, we review recent research advances on PDIs, vis-à-vis their expression, functions, and molecular mechanisms in supporting cancer growth with special emphasis on the anterior gradient (AGR) subfamily. Last, we posit the relevance and therapeutic strategies in targeting the PDIs in cancer.
Collapse
|
13
|
Kawata-Shimamura Y, Eguchi H, Kawabata-Iwakawa R, Nakahira M, Okazaki Y, Yoda T, Grénman R, Sugasawa M, Nishiyama M. Biomarker discovery for practice of precision medicine in hypopharyngeal cancer: a theranostic study on response prediction of the key therapeutic agents. BMC Cancer 2022; 22:779. [PMID: 35841085 PMCID: PMC9288037 DOI: 10.1186/s12885-022-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypopharyngeal cancer is a relatively rare malignancy with poor prognosis. Current chemotherapeutic algorithm is still far from personalized medicine, and the identification of the truly active therapeutic biomarkers and/or targets is eagerly awaited. METHODS Venturing to focus on the conventional key chemotherapeutic drugs, we identified the most correlative genes (and/or proteins) with cellular sensitivity to docetaxel (TXT), cisplatin (CDDP) and 5-fluorouracil (5-FU) in the expression levels, through 3 steps approach: genome-wide screening, confirmation study on the quantified expression levels, and knock-down and transfection analyses of the candidates. The probable action pathways of selected genes were examined by Ingenuity Pathway Analysis using a large-scale database, The Cancer Genome Atlas. RESULTS The first genome-wide screening study derived 16 highly correlative genes with cellular drug sensitivity in 15 cell lines (|R| > 0.8, P < 0.01 for CDDP and 5-FU; |R| > 0.5, P < 0.05 for TXT). Among 10 genes the observed correlations were confirmed in the quantified gene expression levels, and finally knock-down and transfection analyses provided 4 molecules as the most potent predictive markers-AGR2 (anterior gradient 2 homolog gene), and PDE4D (phosphodiesterase 4D, cAMP-specific gene) for TXT; NINJ2 (nerve Injury-induced protein 2); CDC25B (cell division cycle 25 homolog B gene) for 5-FU- in both gene and protein expression levels. Overexpression of AGR2, PDE4D signified worse response to TXT, and the repressed expression sensitized TXT activity. Contrary to the findings, in the other 2 molecules, NINJ2 and CDC25, there observed opposite relationship to cellular drug response to the relevant drugs. IPA raised the potential that each selected molecule functionally interacts with main action pathway (and/or targets) of the relevant drug such as tubulin β chain genes for TXT, DNA replication pathway for CDDP, and DNA synthesis pathway and thymidylate synthetase gene for 5-FU. CONCLUSION We newly propose 4 molecules -AGR2, PDE4D,NINJ2 and CDC25B) as the powerful exploratory markers for prediction of cellular response to 3 key chemotherapeutic drugs in hypopharyngeal cancers and also suggest their potentials to be the therapeutic targets, which could contribute to the development of precision medicine of the essential chemotherapy in hypopharyngeal patients. (339 words).
Collapse
Affiliation(s)
- Yumiko Kawata-Shimamura
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Hidetaka Eguchi
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Yoda
- Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masahiko Nishiyama
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan. .,Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Higashi Sapporo Hospital, 7-35, 3-3 Higashi-Sapporo, Shiroishi-ku, Sapporo, 003-8585, Japan.
| |
Collapse
|